Skip to main content

Advertisement

Log in

Design and Tailoring the Optical and Electronic Characteristics of Silicon Doped PS/SnS2 New Composites for Nano-Semiconductors Devices

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The present paper deals with design of silicon doped PS/SnS2 new composites to use in different nano-semiconductors devices include optic, electronic, photonic and electric approaches with individual characteristics contain few cost, high corrosion resistance, lightweight and good optical, thermal and electronic properties. Using the density functional theory (DFT), some of the electronic (energy band structure, density of states) and electronic characteristics of PS/SnS2/Si composites. S-vacancy could lead to strong n doping for the original SnS2, which largely influences its electronic structure. The obtained results indicated to the PS/SnS2/Si composites may be used for various optoelectronics devices with low cost and high flexibly. The energy band gap PS/SnS2/Si composites was found (Eg = 0.19 eV) which make it can be suitable in various nano-semiconductors devices. The calculated density of states (DOS) may interpret this magnitude of energy gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

yes, the data are available.

References

  1. Novruzova A, Ramazanov M, Chianese A, Hajiyeva F, Maharramov A, Hasanova U (2017) Synthesis, structure and optical properties of pp+pbs/cds hybrid nanocomposites. Chem Eng Trans 60:61–66. https://doi.org/10.3303/CET1760011

    Article  Google Scholar 

  2. Elima ZM, Zihlif AM, Avella M (2008) Thermal and optical properties of poly(methyl methacrylate)/calcium carbonate nanocomposite. J Exp Nanosci 3(4):259–269

    Article  Google Scholar 

  3. Rahimi A, Kazeminezhad I, Mousavi Ghahfarokhi SE (2018) Synthesis and investigation of SnS2/RGO nanocomposites with different GO concentrations: structure and optical properties, photocatalytic performance. J Mater Sci Mater Electron 29:4449–4456. https://doi.org/10.1007/s10854-017-8392-2

    Article  CAS  Google Scholar 

  4. Li Q, Wang K, Lu X, Luo R, Zhang M, Cui C, Zhu G (2020) In situ synthesis of AgI/SnS2 heterojunction photocatalysts with superior photocatalytic activity. Int J Electrochem Sci 15:9256–9270. https://doi.org/10.20964/2020.09.77

    Article  CAS  Google Scholar 

  5. Hashim A, (2009) Study of electrical conductivity for amorphous and Semicrystalline polymers filled with Lithium fluoride additive, M.Sc. Thesis, University Of Mustansiriyah, Iraq

  6. Nagarajan V, Chandiramouli R (2014) Quantum chemical studies on ZrN nanostructures. Int J Chemtech Res 6(1):21–30

  7. Karzazi Y, Belghiti ME, El-Hajjaji F, Hammouti B (2016) Density functional theory modeling and Montecarlo simulation assessment of N-substituted quinoxaline derivatives as mild steel corrosion inhibitors in acidic medium. J Mater Environ Sci 7:3916–3929

    CAS  Google Scholar 

  8. Kolawole OA, Banjo S (2018) Theoretical studies of anti-corrosion properties of Triphenylimidazole derivatives in corrosion inhibition of carbon steel in acidic media via DFT approach. Anal Bioanal Electrochem 10(1):136–146

  9. Pearson RG (2005) Chemical hardness and density functional theory. J Chem Sci 117(5):369–377

    Article  CAS  Google Scholar 

  10. Toukal L, Keraghel S, Benghanem F, Ourari A (2018) Electrochemical, thermodynamic and quantum chemical studies of synthesized benzimidazole derivative as an eco-friendly corrosion inhibitor for XC52 steel in hydrochloric acid. Int J ElectrochemSci 13(1):951–974

    Article  CAS  Google Scholar 

  11. Hossain MA, Jewaratnam J, Ramalingam A, Sahu JN, Ganesan P (2018) A DFT method analysis for formation of hydrogen rich gas from acetic acid by steam reforming process. Fuel 212:49–60

    Article  CAS  Google Scholar 

  12. Hashim A (2021) Fabrication and characteristics of flexible, lightweight, and low-cost pressure sensors based on PVA/SiO2/SiC nanostructures. J Mater Sci Mater Electron 32:2796–2804. https://doi.org/10.1007/s10854-020-05032-9

    Article  CAS  Google Scholar 

  13. Hind A, Hashim A (2019) Fabrication Of Novel (PVA/NiO/SiC) Nanocomposites, structural, electronic and optical properties for humidity sensors. International J SciTechnol Res 8(11):1014-1031

  14. Kundu S, Majumder R, Ghosh R, Pradhan M, Roy S, Singha P, Ghosh D, Banerjee A, Banerjee D, Pal Chowdhury M (2020) Relative humidity sensing properties of doped polyaniline-encased multiwall carbon nanotubes: wearable and flexible human respiration monitoring application. J Mater Sci 55:3884–3901. https://doi.org/10.1007/s10853-019-04276-z

    Article  CAS  Google Scholar 

  15. Hashim A, Al-Khafaji Y, Hadi A (2019) Synthesis and characterization of flexible resistive humidity sensors based on PVA/PEO/CuO nanocomposites. Trans Electr Electron Mater 20:530–536. https://doi.org/10.1007/s42341-019-00145-3

    Article  Google Scholar 

  16. Hashim A, Hamad ZS (2019) Fabrication and Characterization of Polymer Blend Doped with Metal Carbide Nanoparticles for Humidity Sensors. J Nanostruct 9(2):340–348. https://doi.org/10.22052/JNS.2019.02.016

    Article  CAS  Google Scholar 

  17. Gupta N, Kumar V, Dhasmana H, Kumar A, Shukla P, Kumar A, Verma A, Dhawan SK, Jain VK (2020) Investigation of heat transfer characteristics of Al2O3-embedded magnesium nitrate hexahydrate-based nanocomposites for thermal energy storage. In: Jain V, Kumar V, Verma A (eds) Advances in solar power generation and energy harvesting. Springer Proceedings in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-15-3635-9_3

    Chapter  Google Scholar 

  18. Kanemoto SO, Gouthaman S, Venkatesh M, Cheumani AM, Ndikontar MK, Suguna Lakshmi M (2021) Thermal performance of polyurethane nanocomposite from phosphorus and nitrogen-containing monomer, polyethylene glycol and polydimethylsiloxane for thermal energy storage applications. J Therm Anal Calorim. https://doi.org/10.1007/s10973-020-10478-4

  19. Hadi A, Rashid FL, Hussein HQ, Hashim A (2019) Novel of water with (CeO2-WC) and (SiC-WC) nanoparticles systems for energy storage and release applications. IOP Conf Series: Mater Sci Eng 518(3):5. https://doi.org/10.1088/1757-899X/518/3/032059

    Article  Google Scholar 

  20. Rashid FL, Talib SM, Hadi A, Hashim A (2018) Novel of thermal energy storage and release: water/(SnO2 -TaC) and water/(SnO2 –SiC) nanofluids for environmental applications. IOP Conf Series: Mater Sci Eng 454:012113. https://doi.org/10.1088/1757-899X/454/1/012113

    Article  Google Scholar 

  21. Khalid HH, Al-Attiyah AH, Obaid SF (2019) Fabrication of novel (carboxy methyl cellulose–polyvinylpyrrolidone–polyvinyl alcohol)/lead oxide nanoparticles: structural and optical properties for gamma rays shielding applications. Int J Plast Technol 23(1):39–45. https://doi.org/10.1007/s12588-019-09228-5

    Article  CAS  Google Scholar 

  22. Hashim A, Al-Attiyah KHH, Obaid SF (2019) Fabrication of Novel (Biopolymer Blend-Lead Oxide Nanoparticles) Nanocomposites: Structural and Optical Properties for Low Cost Nuclear Radiation Shielding. Ukr J Phys 64(2):157. https://doi.org/10.15407/ujpe64.2.157

    Article  Google Scholar 

  23. Abomostafa HM, Abulyazied DE (2021) Linear and nonlinear optical response of nickel Core–Shell @ silica/PMMA nanocomposite film for flexible optoelectronic applications. J Inorg Organomet Polym 31:2902–2914. https://doi.org/10.1007/s10904-021-01883-9

    Article  CAS  Google Scholar 

  24. Ahmed H, Hashim A (2020) Geometry Optimization, Optical and Electronic Characteristics of Novel PVA/PEO/SiC Structure for Electronics Applications. Silicon. https://doi.org/10.1007/s12633-020-00620-0

  25. Hazim, Abduljalil HM, Hashim A (2020) First principles calculations of electronic, Structural and optical properties of (PMMA–ZrO2–au) and (PMMA–Al2O3–au) nanocomposites for optoelectronics applications. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-020-00224-w

  26. Ahmed H, Hashim A (2020) Design and characteristics of novel PVA/PEG/Y2O3 structure for optoelectronics devices. J Mol Model 26:210. https://doi.org/10.1007/s00894-020-04479-1

    Article  CAS  PubMed  Google Scholar 

  27. Anu A, Abdul Khadar M (2019) CuO–ZnO nanocomposite films with efficient interfacial charge transfer characteristics for optoelectronic applications. SN Appl Sci 1:1057. https://doi.org/10.1007/s42452-019-1002-6

    Article  CAS  Google Scholar 

  28. Hazim A, Hashim A, Abduljalil HM (2019) Analysis of Structural and electronic, properties of novel (PMMA/Al2O3, PMMA/Al2O3-ag, PMMA/ZrO2-ag, PMMA -ag) nanocomposites for low cost electronics and optics applications, Trans. Electr. Electron. Mater. https://doi.org/10.1007/s42341-019-00148-0

    Book  Google Scholar 

  29. Arulkumar S, Senthilkumar T, Parthiban S, Dharmalingam G, Goswami A, Alshehri SM, Gawande MB (2021) AgNWs-a-TiOx: a scalable wire bar coated core–shell nanocomposite as transparent thin film electrode for flexible electronics applications. J Mater Sci Mater Electron 32:6454–6464. https://doi.org/10.1007/s10854-021-05362-2

    Article  CAS  Google Scholar 

  30. Ahmed H, Hashim A (2021) Design of Polymer/Lithium fluoride new structure for renewable and electronics applications. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-021-00340-1

  31. Ahmed H, Hashim A (2020) Structural, Optical and Electronic Properties of Silicon Carbide Doped PVA/NiO for Low Cost Electronics Applications. Silicon. https://doi.org/10.1007/s12633-020-00543-w

  32. Hazim A, Abduljalil HM, Hashim A (2020) Structural, spectroscopic, electronic and optical properties of novel platinum doped (PMMA/ZrO2) and (PMMA/Al2O3) nanocomposites for electronics devices. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-020-00210-2

  33. Ahmed H, Hashim A (2021) Exploring the characteristics of new structure based on silicon doped organic blend for photonics and electronics applications. Silicon. https://doi.org/10.1007/s12633-021-01258-2

  34. Hashim A (2021) Enhanced morphological, optical and electronic characteristics of WC NPs doped PVP/PEO for flexible and lightweight optoelectronics applications. Opt Quant Electron 53:478. https://doi.org/10.1007/s11082-021-03100-w

    Article  CAS  Google Scholar 

  35. Ahmed H, Hashim A (2021) Tuning the characteristics of novel (PVA-Li-Si3N4) structures for renewable and electronics fields. Silicon. https://doi.org/10.1007/s12633-021-01186-1

  36. Wen YH, Tsou CH, de Guzman MR, de Guzman MR, Huang D, Yu YQ, Gao C, Zhang XM, du J, Zheng YT, Zhu H, Wang ZH (2021) Antibacterial nanocomposite films of poly(vinyl alcohol) modified with zinc oxide-doped multiwalled carbon nanotubes as food packaging. Polym Bull. https://doi.org/10.1007/s00289-021-03666-1

  37. Hashim A, Abduljalil HM, Ahmed H (2020) Fabrication and Characterization of (PVA-TiO2)1-x/ SiCx Nanocomposites for Biomedical Applications. Egypt J Chem 63(1):71–83. https://doi.org/10.21608/EJCHEM.2019.10712.1695

    Article  Google Scholar 

  38. Albalwi H, Abou El Fadl FI, Ibrahim MM et al (2021) Antibacterial impact of acrylic acid /polyvinyl alcohol/ MgO various nanocomposite hydrogels prepared by gamma radiation. Polym Bull. https://doi.org/10.1007/s00289-021-03866-9

  39. Ahmed H, Hashim A (2020) Fabrication of PVA/NiO/SiC Nanocomposites and Studying their Dielectric Properties For Antibacterial Applications. Egypt J Chem 63(3):1167–1176. https://doi.org/10.21608/EJCHEM.2019.11109.1712

    Article  Google Scholar 

  40. Gapusan RB, Balela MDL (2021) Visible light-induced photocatalytic and antibacterial activity of TiO2/polyaniline-kapok fiber nanocomposite. Polym Bull. https://doi.org/10.1007/s00289-021-03679-w

  41. Al-Garah NH, Rashid FL, Hadi A, Hashim A (2018) Synthesis and Characterization of Novel (Organic–Inorganic) Nanofluids for Antibacterial, Antifungal and Heat Transfer Applications. J Bionanosci 12:336–340. https://doi.org/10.1166/jbns.2018.1538

    Article  CAS  Google Scholar 

  42. Bee SL, Bustami Y, Ul-Hamid A, Lim K, Abdul Hamid ZA (2021) Synthesis of silver nanoparticle-decorated hydroxyapatite nanocomposite with combined bioactivity and antibacterial properties. J Mater Sci Mater Med 32:106. https://doi.org/10.1007/s10856-021-06590-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lv YK, Mei L, Zhang LX et al (2021) Multifunctional graphene-based nanocomposites for simultaneous enhanced photocatalytic degradation and photothermal antibacterial activity by visible light. Environ Sci Pollut Res 28:49880–49888. https://doi.org/10.1007/s11356-021-14199-5

    Article  CAS  Google Scholar 

  44. Ahmed H, Hashim A, Abduljalil HM (2019) Analysis of Structural, Electrical and Electronic Properties of (Polymer Nanocomposites/ Silicon Carbide) for Antibacterial Application. Egypt J Chem 62(4):1167–1176. https://doi.org/10.21608/EJCHEM.2019.6241.1522

    Article  Google Scholar 

  45. Shakir MS, Khosa MK, Zia KM, Saeed M, Bokhari TH, Zia MA (2021) Investigation of thermal, antibacterial, antioxidant and antibiofilm properties of PVC/ABS/ZnO nanocomposites for biomedical applications. Korean J Chem Eng. https://doi.org/10.1007/s11814-021-0866-5

  46. Elhaes H, Morsy M, Yahia IS, Ibrahim M (2021) Molecular modeling analyses for electronic properties of CNT/TiO2 nanocomposites. Opt Quant Electron 53:269. https://doi.org/10.1007/s11082-021-02945-5

    Article  CAS  Google Scholar 

  47. Agool IR, Mohammed FS, Hashim A (2015) The effect of magnesium oxide nanoparticles on the optical and dielectric properties of (PVA-PAA-PVP) blend. Adv Environ Biol 9(911):1–10

    Google Scholar 

  48. Alrowaili ZA, Taha TA, El-Nasser KS et al (2021) Significant enhanced optical parameters of PVA-Y2O3 polymer nanocomposite films. J Inorg Organomet Polym 31:3101–3110. https://doi.org/10.1007/s10904-021-01995-2

    Article  CAS  Google Scholar 

  49. Hashim A, Structural E (2020) Optical, and Electronic Properties of In2O3 and Cr2O3 Nanoparticles Doped Polymer Blend for Flexible Electronics and Potential Applications. J Inorg Organomet Polym Mater 30:42. https://doi.org/10.1007/s10904-020-01528-3

    Article  CAS  Google Scholar 

  50. Nouh SA, Benthami K, Abou Elfadl A, el-Shamy NT, Tommalieh MJ (2021) Structural, thermal and optical characteristics of laser-exposed Pd/PVA nanocomposite. Polym Bull 78:1851–1866. https://doi.org/10.1007/s00289-020-03188-2

    Article  CAS  Google Scholar 

  51. Hashim A, Hamad ZS (2020) Lower Cost and Higher UV-Absorption of Polyvinyl Alcohol/ Silica Nanocomposites For Potential Applications. Egypt J Chem 63(2):461–470. https://doi.org/10.21608/EJCHEM.2019.7264.1593

    Article  Google Scholar 

  52. Hashim A, Jassim A (2017) Novel of (PVA-ST-PbO2) Bio Nanocomposites: Preparation and Properties for Humidity Sensors and Radiation Shielding Applications. Sens Lett 15(12):1003–1009. https://doi.org/10.1166/sl.2018.3915

    Article  Google Scholar 

  53. Shaeri MA, Mohagheghi MMB (2021) Synthesis and structural and optical properties of SiO2/activated carbon nanocomposites. J Mater Sci Mater Electron 32:18425–18438. https://doi.org/10.1007/s10854-021-06388-2

    Article  CAS  Google Scholar 

  54. Ahmed H, Hashim A, Abduljalil HM (2020) Determination of Optical Parameters of Films Of PVA/TiO2/SiC and PVA/MgO/SiC Nanocomposites For Optoelectronics and UV-Detectors. Ukr J Phys 65(6):533. https://doi.org/10.15407/ujpe65.6.533

    Article  Google Scholar 

  55. Hashim A, Abduljalil H, Ahmed H (2019) Analysis of Optical, Electronic and Spectroscopic properties of (Biopolymer-SiC) Nanocomposites For Electronics Applications. Egypt J Chem 62(9):1659–1672. https://doi.org/10.21608/EJCHEM.2019.7154.1590

    Article  Google Scholar 

  56. Gamal WM, El-Bassuony AH, Abdelsalam HK et al (2021) Role of elastic and optical properties on silver nanoferrite and nanochromite for optical switch device applications. J Mater Sci Mater Electron 32:21590–21602. https://doi.org/10.1007/s10854-021-06667-y

    Article  CAS  Google Scholar 

  57. Ahmed H, Hashim A (2020) Lightweight, flexible and high energies absorption property of PbO2 doped polymer blend for various renewable approaches. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-020-00244-6

  58. Ahmed H, Hashim A (2020) Structure, optical, electronic and chemical characteristics of novel (PVA-CoO) structure doped with silicon carbide. Silicon. https://doi.org/10.1007/s12633-020-00723-8

  59. Shubha A, Manohara SR, Angadi B (2021) Influence of TiO2 nanoparticles on structural, optical, dielectric and electrical properties of bio-compatible PEOX–PVP–TiO2 nanocomposites. Polym Bull. https://doi.org/10.1007/s00289-021-03838-z

  60. Hashim A (2021) Synthesis of SiO2/CoFe2O4 nanoparticles doped CMC: exploring the morphology and optical characteristics for Photodegradation of organic dyes. J Inorg Organomet Polym Mater 31:2483–2491. https://doi.org/10.1007/s10904-020-01846-6

    Article  CAS  Google Scholar 

  61. Badawi A, Alharthi SS, Alotaibi AA, Althobaiti MG (2021) Investigation of the mechanical and electrical properties of SnS filled PVP/PVA polymeric composite blends. J Polym Res 28:205. https://doi.org/10.1007/s10965-021-02569-z

    Article  CAS  Google Scholar 

  62. Hadi A, Hashim A, Al-Khafaji Y (2020) Structural, optical and electrical properties of PVA/PEO/SnO2 new nanocomposites for flexible devices. Trans Electr Electron Mater 21:283–292. https://doi.org/10.1007/s42341-020-00189-w

    Article  Google Scholar 

  63. Dhatarwal P, Choudhary S, Sengwa RJ (2021) Dielectric and optical properties of alumina and silica nanoparticles dispersed poly(methyl methacrylate) matrix-based nanocomposites for advanced polymer technologies. J Polym Res 28:63. https://doi.org/10.1007/s10965-020-02406-9

    Article  CAS  Google Scholar 

  64. Al-Ramadhan Z, Hashim A, Kadham Algidsawi AJ (2011) The D.C electrical properties of (PVC-Al2O3) composites. AIP Conf Proc 1400(1):180–185. https://doi.org/10.1063/1.3663109

    Article  CAS  Google Scholar 

  65. Jebur QM, Hashim A, Habeeb MA (2019) Structural, Electrical and Optical Properties for (Polyvinyl Alcohol–Polyethylene Oxide–Magnesium Oxide) Nanocomposites for Optoelectronics Applications. Trans Electr Electron Mater 20:334–343. https://doi.org/10.1007/s42341-019-00121-x

    Article  Google Scholar 

  66. Vanin AI, Kumzerov YA, Solov’ev VG, Khanin SD, Gango SE, Ivanova MS, Prokhorenko MM, Trifonov SV, Cvetkov AV, Yanikov MV (2021) Electrical and optical properties of nanocomposites fabricated by the introduction of iodine in porous dielectric matrices. Glas Phys Chem 47:229–234. https://doi.org/10.1134/S1087659621030123

    Article  CAS  Google Scholar 

  67. Hashim A, Hadi A (2017) A Novel Piezoelectric Materials Prepared from (Carboxymethyl Cellulose-Starch) Blend-Metal Oxide Nanocomposites. Sens Lett 15:1019–1022. https://doi.org/10.1166/sl.2017.3910

    Article  Google Scholar 

  68. Rani N, Khurana K, Jaggi N (2021) Structural and electrical properties of MWCNTs/SnO2 nanocomposites via hydrothermal and co-precipitation route: a comparative study. Appl Nanosci 11:2291–2301. https://doi.org/10.1007/s13204-021-01968-4

    Article  CAS  Google Scholar 

  69. Fan Y, Zhang J, Qiu Y, Zhu J, Zhang Y, Hu G (2017) A DFT study of transition metal (Fe, co, Ni, cu, ag, au, Rh, Pd, Pt and Ir)-embedded monolayer MoS2 for gas adsorption. Comput Mater Sci 138:255–266

    Article  CAS  Google Scholar 

  70. Cui H, Jia P, Peng X, Li P (2020) Adsorption and sensing of CO and C2H2 by S-defected SnS2 monolayer for DGA in transformer oil: a DFT study. Mater Chem Phys 249:123006

    Article  CAS  Google Scholar 

  71. Xia C, Peng Y, Zhang H, Wang T, Wei S, Jia Y (2014) The characteristics of n-and p-type dopants in SnS2 monolayer nanosheets. Phys Chem Chem Phys 16(36):19674–19680

    Article  CAS  Google Scholar 

  72. Madyal RS, Arora JS (2014) DFT studies for the evaluation of amine functionalized polystyrene adsorbents for selective adsorption of carbon dioxide. RSC Adv 4(39):20323–20333

    Article  CAS  Google Scholar 

  73. Liu J, Zhang H, Li Y, Shen H, Ding Y, Su N, Shao L, Jin G, Zhai Z, Fu C, Zhang Q (2021) Enhanced Vis-NIR light absorption and thickness effect of Mo-modified SnO2 thin films: a first principle calculation study. Results Physics 23:103997

    Article  Google Scholar 

  74. Zelati A, Taghavimendi R, Bakhshayeshi A (2021) First-principles investigation of optoelectronic properties of novel SnS2 with a cubic structure. Solid State Commun 333:114344

    Article  CAS  Google Scholar 

  75. Aberle AG (1999) Crystalline silicon solar cells: advanced surface passivation and analysis. Centre for Photovoltaic Engineering. University of New South Wales

  76. Wager JF, Kuhn K (2017) Device physics modeling of surfaces and interfaces from an induced gap state perspective. Crit Rev Solid State Mater Sci 42(5):373–415

    Article  CAS  Google Scholar 

  77. Heine V (1965) Theory of surface states. Phys Rev 138(6A):A1689–A1696

    Article  Google Scholar 

Download references

Acknowledgments

Acknowledgment to University of Babylon.

Author information

Authors and Affiliations

Authors

Contributions

Hind Ahmed and Ahmed Hashim.

Corresponding author

Correspondence to Ahmed Hashim.

Ethics declarations

Ethics Approval

(Research involving human participants, their data or biological) material.

The Research is not involving the studies on human or their data.

Consent to Participate

consent to participate.

Consent for Publication

consent for publication.

Conflict of Interest

no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, H., Hashim, A. Design and Tailoring the Optical and Electronic Characteristics of Silicon Doped PS/SnS2 New Composites for Nano-Semiconductors Devices. Silicon 14, 6637–6643 (2022). https://doi.org/10.1007/s12633-021-01449-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01449-x

Keywords

Navigation