Skip to main content

Advertisement

Log in

Enhanced Structural, Optical, and Electrical Properties of PVP/ZnO Nanocomposites

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

The filling of ZnO nanofillers into the host PVP matrix to formulate a novel class of PVP:(15-x)ZnO nanocomposite employing the solvent casting method is presented. The developmental effect of the ZnO nanofillers in the PVP matrix for various filler levels on structural, optical, dielectric, and electric properties is explored for future device applications. XRD studies reviewed the developments in microstructural disparities of different filler concentrations. The scanning electron microscope (SEM) and energy-dispersive analysis of X-rays (EDS) technique show the surface morphology, chemical configuration, and conformation of PVP:(15–x)ZnO nanocomposites. FTIR spectra of pure and filled PVP nanocomposite replicate a manifestation in irregular shifts due to complex inter-/intramolecular hydrogen bonding between the filler and PVP matrix. The decrease in the optical energy band gap found for the filler percentage concentration x = 15% was evaluated by UV/Vis spectroscopy. With the rise in filler loading level from x = 0 to 15wt%, the dc conductivity increases from 0.97 × 10–9 to 4.79 × 10–9 S/cm, and beyond the filler level x > 15wt %, the dc conductivity found to be declining. In the PVP matrix, the metal oxide nanofillers provide characteristically extensive conductive pathways even at ultra-low loadings for x = 15wt%, enhancing the conducting properties. The frequency-dependent dielectric constant of PVP:(15-x)ZnO nanocomposite decreases with augmented nanofiller additive level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdelghanya AM, Orabyb FMO (2019) Influence of green synthesized gold nanoparticles on the structural, optical, electrical and dielectric properties of (PVP/SA) blend. Physica B: Phys Condens Matter 560:162–173. https://doi.org/10.1016/j.physb.2019.02.029

    Article  Google Scholar 

  • Abdelrazek EM, Abdelghany AM, Oraby AH, Asnag GM (2012) Investigation of Mixed Filler Effect on Optical and Structural Properties of PEMA Films. Int J Eng Technol 12:98–102

    Google Scholar 

  • Alexander X-R (1969) Methods in Polymer Science. Wiley, Interscience, New York

    Google Scholar 

  • Anandakumar VM, Khadar AM (2008) Cryst Res Technol 43:193–199. https://doi.org/10.1002/crat.200711078

    Article  Google Scholar 

  • Ando M (1995) KoheiKadono, MasatakeHaruta, Toru Sakaguchi, Masaru Miya. Nature 374:625–627

    Article  Google Scholar 

  • Basahel SN, Ali TT, Narasimharao K, Bagabas AA, Mokhtar M (2012) Effect of iron oxide loading on the phase transformation and physicochemical properties of nanosized mesoporous ZrO2. Mater Res Bull 47(11):3463–3472. https://doi.org/10.1016/j.materresbull.2012.07.003

    Article  Google Scholar 

  • Basahel SN, Mokhtar M, Alsharaeh EH, Ali TT, Mahmoud HA, Narasimharao K (2016) Physico-Chemical and Catalytic Properties of Mesoporous CuO-ZrO2 Catalysts. Catal 6:57. https://doi.org/10.3390/catal6040057

    Article  Google Scholar 

  • Batoo M, Khalid (2011) Study of dielectric and impedance properties on Mn ferrites. Physica B 406:382–387. https://doi.org/10.1016/j.physb.2010.10.075

    Article  Google Scholar 

  • Bhargava RN, Gallagher D, Hong X, Nurmikko A (1994) Optical properties of manganese-doped nanocrystals of ZnS. Phys Rev Lett 72:416. https://doi.org/10.1103/PhysRevLett.72.416

    Article  Google Scholar 

  • Cao Y, Irwin PC, Younsi K (2004) The future of nano dielectrics in the electrical power industry. IEEE Transactions on Dielectrics and Electrical Insulation. 11 (5): 797–807

  • Chemistry of Materials. Vijaya Kumar R, Diamant Y, Gedanken A (2000) Sonochemical Synthesis and Characterization of Nanometer-Size Transition Metal Oxides from Metal Acetates. Chem Mater 12 (8): 2301–2305

  • Chen Y, Bagnall DM, Koh H, Park K, Hiraga K, Zhu Z, Yao T (1998) Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire: growth and characterization. J Appl Phys 84:3912. https://doi.org/10.1063/1.368595

    Article  Google Scholar 

  • Chun KY, Oh Y, Rho J, Ahn JH, Kim YJ, Choi HR, Baik S (2010) Highly conductive, printable and stretchable composite films of carbon nanotubes and silver Nat. Nanotechnol 5:853. https://doi.org/10.1038/nnano.2010.232

    Article  Google Scholar 

  • Debye P, Scherrer P (1916) The search for electron rings inside atoms led to the Debye-Scherrer method. Interferenzen an Regellos Orientierten Teilchen Im Röntgenlicht, Physik Z 17:277–282. https://doi.org/10.1002/andp.201600306

    Article  Google Scholar 

  • Dutta A, Sinha TP, Jena P, Adak S (2008) Ac conductivity and dielectric relaxation in ionically conducting soda–lime–silicate glasses. J Non- Cryst Solids 354:3952–3957. https://doi.org/10.1016/j.jnoncrysol.2008.05.028

    Article  Google Scholar 

  • Elashmawi IS, Elsayed NH (2020) The role of gold nanoparticles in the Structural and electrical properties of Cs/PVP blend. Polym Bull 77:949–962

    Article  Google Scholar 

  • Gutul T, Rusu E, Condur N, Ursaki V, Goncearenco E, Vlazan P (2014) Preparation of poly (n-vinylpyrrolidone)-stabilized ZnO colloid nanoparticles. Beilstein J Nanotechnol 5:402–406

    Article  Google Scholar 

  • Hall C (1981) Electrical and Optical Properties. In: Polymer Materials. Palgrave, London. https://doi.org/10.1007/978-1-349-10187-0_4

  • Hemanth Kumar GN, Rao L, Gopal J, Narasimhulu NO, Chakradhar KVC, Varada Rajulu RPS (2004) Spectroscopic investigation Mn+2 ions doped polyvinyl alcohol films. Polymer 45:5407–5415. https://doi.org/10.1016/j.polymer.2004.05.068

    Article  Google Scholar 

  • Huang X, Yu H, Shi S, Huang C (2019) Improving the performance of inverted polymer solar cells by the efficiently doping and modification of electron transport layer-ZnO. Org Electron 65:311–320

    Article  Google Scholar 

  • Keirbeg U, Vollmer M (1995) Optical Properties of Metal Clusters, Springer Series in Material Science, vol 25. Springer-Verlag, Berlin

    Google Scholar 

  • Kongzhao Su, Jiang F, Qian J, Gai Y, Mingyan Wu, Bawaked SM, Mokhtar M, Shaeel A, AL-Thabaiti, and Maochun Hong, (2014) Generalized Synthesis of Calixarene-Based High-Nuclearity M4n Nanocages (M = Ni or Co; n = 2–6). Cryst Growth Des 14(6):3116–3123

    Article  Google Scholar 

  • Lipomi DJ, Vosgueritchian M, Tee BC, Hellstrom SL, Lee JA, Fox CH, Bao Z (2011) Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotechnol 6:788–792. https://doi.org/10.1038/nnano.2011.184

    Article  Google Scholar 

  • Mas RH, Mas Harisa S, Kathiresanb SM (2010) Synthesis of some new substituted 1,2,4-triazole-5-thiol-1,3,4- thiadiazole and 1,3-thiazine derivatives. Der Pharma Chemica 2:316–323

    Google Scholar 

  • Morsi MA, Abdelghany AM (2017) UV-irradiation assisted control of the structural, optical and thermal properties of PEO/PVP blended gold nanoparticles. Mater Chem Phys 201:100–112. https://doi.org/10.1016/j.matchemphys.2017.08.022

    Article  Google Scholar 

  • Mott NF (1993) Conduction in Non-Crystalline Materials, 2nd edn. Calrendon Press, Oxford, UK

    Google Scholar 

  • Mott NF, Devis EA (1979) Electronic Process in Non-Crystalline Materials, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Namazi H (2017) Polymers in our daily life. Bioimpacts. 7(2):73–74. https://doi.org/10.15171/bi.2017.09

  • Nelson JK, Hu Y, Thiticharoenpong J (2003) Electrical Properties of TiO2 Nanocomposites" Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Annual Report, p 719–722

  • Park M, Im J, Shin M, Min Y, Park J, Cho H, Park S, Shim MB, Jeon S, Chung DY, Bae J, Park J, Jeong U, Kim K (2012) Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat Nanotechnol 7:803–809. https://doi.org/10.1038/nnano.2012.206

    Article  Google Scholar 

  • Perez-Lopes OW, Faria AC, Marcilio NR, Bueno JMC (2005) The catalytic behaviour of zinc oxide prepared from various precursors and by different methods. Mater Res Bull 40(12): 2089–2099

  • Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J M (2000) Nano-sized Transition-metal Oxides as Negative Electrode Materials for Lithium-ion Batteries, Nature, 407 (28)] 496–499. https://doi.org/10.1038/35035045

  • Ralitsa Purova, Katabathini Narasimharao, Nesreen S.I. Ahmed, Shaeel Al-Thabaiti, Abdulmohsen Al-Shehri, Mohammed Mokhtar, Wilhelm Schwieger (2015) Pillared HMCM-36 zeolite catalyst for biodiesel production by esterification of palmitic acid. J Mol Catal A: Chem 406: 159–167

  • Ragab HM (2011) Spectroscopic investigations and electrical properties of PVA/PVP blend filled with different concentrations of nickel chloride. Physica B 406:3759–3767. https://doi.org/10.1016/j.physb.2010.11.030

    Article  Google Scholar 

  • Raja K, Ramesh PS, Geetha D (2014) Synthesis, structural and optical properties of ZnO and Ni-doped ZnO hexagonal nanorods by Co-precipitation method Spectrochim. Acta, Part A 120:19–24. https://doi.org/10.1016/j.saa.2013.09.103

    Article  Google Scholar 

  • Ravi V, Pasricha R, Dhage SR (2004) Synthesis of fine particles of ZnO at 100 °C. Mater Lett 59:779–781. https://doi.org/10.1016/j.matlet.2004.11.019

    Article  Google Scholar 

  • Rawat A, Mahavar HK, Tanwar A, Singh PJ (2014) Study of electrical properties of polyvinylpyrrolidone/polyacrylamide blend thin films. Bull Mater Sci 37(2):273–279

    Article  Google Scholar 

  • Rithin Kumar NB, Vincent Crasta, Praveen BM, Mohan Kumar (2015) Studies on structural, optical and mechanical properties of MWCNTs and ZnO nanoparticles doped PVA nanocomposites, Nanotechnology Reviews, 4 (5): 457–467

  • Rithin Kumar NB, Crasta V, Praveen BM, Shetty BG (2019) A conductive mechanism of PVA (Mowiol 10–98) filled with ZnO and MWCNT nanoparticles. Bull Mater Sci 42(3):1–8

    Google Scholar 

  • Selvasekarapandian S, Baskaran R, Kamishima O, Kawamura J, Hattori T (2006) Laser Raman and FTIR studies on Li+ interaction in PVAc–LiClO4 polymer electrolytes. Spectro Chim Acta a 65:1234–1240. https://doi.org/10.1016/j.saa.2006.02.026

    Article  Google Scholar 

  • Sherman RD, Middleman LM, Jacobs SM (1983) Electron transport processes in conductor-filled polymers. Polym Eng Sci 23:36. https://doi.org/10.1002/pen.760230109

    Article  Google Scholar 

  • Sreekanth K, Siddaiah, T., Gopal, N.O (2020) Thermal, structural, optical and electrical conductivity studies of pure and Fe3+ ions doped PVP films for semiconducting polymer devices. Mater. Res. Innov. 10.1080/ 14328917.2020.1744346

  • Sun Y, Seo JH, Takacs CJ, Seifter J, Heeger AJ (2011) Inverted polymer solar cells integrated with a low-temperature-annealed sol–gel-derived ZnO film as an electron transport layer. Adv Mater 23:1679–1683

    Article  Google Scholar 

  • J. Tauc (1972) Optical properties of solids, Optical Properties of Solid, F. Abeles, Ed., North-Holland, Amsterdam, The Netherlands p 277

  • Ulaganathan M, Rajendran MS (2010a) Preparation and characterizations of PVAc/P (VdF-HFP)-based polymer blend electrolytes. Ionics 16:515–521

    Article  Google Scholar 

  • Ulaganathan M, Rajendran M S (2010) Preparation and characterizations of PVAc/P (VdF-HFP)-based polymer blend electrolytes. Ionics 16: 515–521

  • Ungar T, Gubicza J, Ribarik G, Borbely A (2001) Crystallite size distribution and dislocation structure determined by diffraction profile analysis: principles and practical application to cubic and hexagonal crystals. J Appl Cryst 34:298–310. https://doi.org/10.1107/S0021889801003715

    Article  Google Scholar 

  • Wiggers H, Starke R, Roth P (2001) Silicon Particle Formation by Pyrolysis of Silane in a Hot Wall Gasphase Reactor. 24, https://doi.org/10.1002/1521

  • Williamson GB, Smallman RC (1956) Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye-Scherrer spectrum, Phil. Mag., Vol: 34–46. https://doi.org/10.1080/14786435608238074

  • Xiong H-M (2010) Photoluminescent ZnO nanoparticles modified by polymers. J Mater Chem 20:4251–4262

    Article  Google Scholar 

  • Zidan HM (2003) Structural properties of CrF3, and MnCl2-filled poly (vinyl alcohol) films. J Appl Polym Sci 88:1115–1120. https://doi.org/10.1002/app.12044

    Article  Google Scholar 

  • Zidan HM, Abdelrazek EM, Abdelghany AM, Tarabiah AE (2019) Characterization and some physical studies of PVA/PVP filled with MWCNTs. J Market Res 8:904–913. https://doi.org/10.1016/j.jmrt.2018.04.023

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Sahebagouda Jambaladinni reviewed the manuscript, conceptualized and gave suggestions for the correction of the manuscript, carried out investigation, visualization and editing, wrote the article and took part in resources. J. S. Bhat gave suggestions for the correction of the manuscript and carried out supervision and validation.

Corresponding author

Correspondence to Sahebagouda Jambaladinni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jambaladinni, S., Bhat, J.S. Enhanced Structural, Optical, and Electrical Properties of PVP/ZnO Nanocomposites. Iran J Sci Technol Trans Sci 46, 333–342 (2022). https://doi.org/10.1007/s40995-021-01213-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-021-01213-1

Keywords

Navigation