Skip to main content

Advertisement

Log in

Comparative Study of Analog Parameters for Various Silicon-Based Tunnel Field-Effect Transistors

  • Review Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this ultramodern scenario, low power, less cost and reduced storage devices are in great demand. Because the majority devices operate on a remote power supply, low-power memories are enticing the unified VLSI industry. For reduced power consumption, high energy efficiency circuit, TFET is a feasible alternate to MOSFET as it is a p-type, intrinsic, n-type (p-i-n) diode whose tunnel current drifts amidst of the bands of channel and source having a minimum leakage current and reduced sub-threshold slope (SS). The sole difference between TFET and MOSFET is the switching mechanism: TFETs use band-to-band tunnelling (BTBT), while MOSFETs use thermionic emission. In this survey, various types of TFET structures are described considering analog, linearity and device parameters like on-current (ION), SS, off-current (IOFF), current ratio (ION/IOFF), threshold voltage (VT) etc., and comparison is done among the designed TFET structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

We can provide the data as per request.

Code Availability

No source code is available for this manuscript.

References

  1. Saurabh S, Kumar MJ (2016) Fundamentals of tunnel field-effect transistors. 1st Edition. CRC Press. https://doi.org/10.1201/9781315367354

  2. Saxena S, Tripathi SL, Sinha SK, Patel GS, Pravalika C (2019) Review on performance evaluation of TFET Structures & its Applications. THINK INDIA J 22(16):220–227

    Google Scholar 

  3. Schaller RR (1997) Moore’s law: past, present and future. IEEE Spectr 34(6):52–59

    Article  Google Scholar 

  4. Reddy NN, Panda DK (2020) A comprehensive review on tunnel field-effect transistor (TFET) based biosensors: recent advances and future prospects on device structure and sensitivity. Silicon. https://doi.org/10.1007/s12633-020-00657-1

  5. Datta S, Liu H, Narayan V (2014) Tunnel FET tech.: a reliability perspective. Microelectron Reliabil 54(5):861–874

    Article  Google Scholar 

  6. Strangio S, Settino F, Palestri P, Lanuzza M, Crupi F, Esseni D, Selmi L (2018) Digital and analog TFET circuits: design and benchmark. Solid State Electron 146:50–65. https://doi.org/10.1016/j.sse.2018.05.003

    Article  CAS  Google Scholar 

  7. Satish T, Kureshi AK (2016) Review of tunnel field effect transistor (TFET). Int J Appl Eng Res 11(7):4922–4929

    Google Scholar 

  8. Fahad HM, Hussain MM (2013) High-performance Si nanotube tunneling FET for ultralow-power logic applications. IEEE Trans. on Electron Dev. 60(3):1034–1039

    Article  CAS  Google Scholar 

  9. Kumar MJ, Janardhanan S (2013) Doping-less Tunnel Field Effect Transistor: Design and Investigation. IEEE Trans on Electron Dev 60(10):3285-3290

  10. Hanna AN, Hussain MM (2015) Si/Ge hetero-structure nanotube tunnel field effect transistor. J Appl Phys 117(1):1–7. https://doi.org/10.1063/1.4905423

    Article  CAS  Google Scholar 

  11. Seo JH, Yoon YJ, Lee S, Lee JH, Cho S, Kang IM (2015) Design and analysis of Si-based arch-shaped gate-all-around (GAA) tunneling field-effect transistor (TFET). Current Appl Phys 15(3):208–212

    Article  Google Scholar 

  12. Nigam K, Pandey S, Kondekar PN, Sharma D (2016) Temperature sensitivity analysis of polarity controlled electrically doped hetero-TFET. 12th Conf. on Ph.D. Res. in Microelectron. and Electron. (PRIME). 1–4. https://doi.org/10.1109/PRIME.2016.7519465

  13. Madan J, Chaujar R (2016) Gate drain-overlapped-asymmetric gate dielectric-GAA-TFET: a solution for suppressed ambipolarity and enhanced ON state behaviour. Appl Phys A Mater Sci Process 122:973. https://doi.org/10.1007/s00339-016-0510-0

    Article  CAS  Google Scholar 

  14. Gupta S, Nigam K, Pandey S, Sharma D, Kondekar PN (2017) Performance improvement of heterojunction double gate drain overlapped TFET using Gaussian doping. Fifth Berk. Sym. On Energ. Effi. Electron. Sys. & steep transistors. Work. E3S:1–3. https://doi.org/10.1109/e3s.2017.8246171

    Article  Google Scholar 

  15. Li W, Liu H, Wang S, Chen S, Yang Z (2017) Design of High Performance Si/SiGe HeterojunctionTunneling FETs with a T-shaped gate. Nanoscale Res Lett 12:198. https://doi.org/10.1186/s11671-017-1958-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Soni D, Sharma D, Yadav S, Aslam M, Sharma N (2018) Performance improvement of doped TFET by using plasma formation concept. Superlattice Microst 113:97–109. https://doi.org/10.1016/j.spmi.2017.10.012

    Article  CAS  Google Scholar 

  17. Sahay S, Kumar MJ (2017) Nanotube Junctionless FET: proposal, design, and investigation. IEEE Trans. on Electron Dev. 64(4):1851–1856. https://doi.org/10.1109/TED.2017.2672203

    Article  Google Scholar 

  18. Singh S, Pal P, Mittal R, Tamia A, Kondekar PN (2014) Si on ferroelectric tunnel FET (SOF-TFET) for low power application. IEEE 2nd Int. Conf. on Emer. Electron. (ICEE). 1–3. https://doi.org/10.1109/icemelec.2014.7151189

  19. Raad BR, Tirkey S, Dheeraj Sharma D, PravinKondekar P (2017) A new design approach of Dopingless tunnel FET for enhancement of device characteristics. IEEE Trans Electron Dev 64(4):1830–1836

    Article  CAS  Google Scholar 

  20. Yadav S, Madhukar R, Sharma D, Aslam M (2018) A new structure of electrically doped TFET for improving electronic characteristics. Appl Phys 124(7):517. https://doi.org/10.1007/s00339-018-1930-9

    Article  CAS  Google Scholar 

  21. Kumar N, Mushtaq U, Amin I, Anand S (2019) Design and performance analysis of dual-gate all around Core-Shell nanotube TFET. Superlattice Microst 125:356–364. https://doi.org/10.1016/j.spmi.2018.09.012

    Article  CAS  Google Scholar 

  22. Singh S, Ashish Raman A (2018) A dopingless gate-all-around (GAA) gate-stacked nanowire FET with reduced parametric fluctuation effects. J Comp Electron 17:967–976. https://doi.org/10.1007/s10825-018-1166-0

    Article  Google Scholar 

  23. Dutta U, Soni MK, Pattanaik M (2018) Design and analysis of tunnel FET for low power high performance applications. Int J Mod Edu Comp Sci 10(1):65–73. https://doi.org/10.5815/ijmecs.2018.01.07

    Article  Google Scholar 

  24. Kim JH, Kim S, Park B (2019) Double-gate TFET with Vertical Channel sandwiched by lightly doped Si. IEEE Trans on Electron Dev 66(4):1656–1661

    Article  CAS  Google Scholar 

  25. Singh A, Chaudhary S, Sharma SM, Sarkar CK (2020) Improved drive capability of silicon Nano tube tunnel FET using halo implantation. Silicon. 12:2555–2561. https://doi.org/10.1007/s12633-019-00350-y

    Article  CAS  Google Scholar 

  26. Musalgaonkar G, Sahay S, Saxena RS, Kumar MJ (2020) Nanotube tunneling FET with a Core source for Ultrasteep subthreshold swing: a simulation study. IEEE Trans on Elect Dev 66(10):4425–4432

    Article  Google Scholar 

  27. Shreya S, Khan AH, Kumar N, Amin SI, Anand S (2019) Core-Shell Junctionless nanotube tunnel field effect transistor: design and sensitivity analysis for biosensing application. IEEE Sensors J 20(2):672–679

    Article  Google Scholar 

  28. Musalgaonkar G, Sahay S, Saxena RS, Kumar MJ (2019) A Line Tunneling Field-Effect Transistor Based on Misaligned Core–Shell Gate Architecture in Emerging Nanotube FETs IEEE Trans. on Elect Dev 66(6): 2809–2816

  29. Patel J, Sharma D, Yadav S, Lemtur A, Suman P (2019) Performance improvement of nanowire TFET by hetero-dielectric and hetero-material: at device and circuit level. Microelectron J 85:72–82

    Article  CAS  Google Scholar 

  30. Mushtaq U, Kumar N, Anand S, Amin I (2019) Design and performance analysis of Core-Shell dual metal-dual gate cylindrical GAA silicon nanotube-TFET. Silicon. 12:2355–2363. https://doi.org/10.1007/s12633-019-00329-9

    Article  CAS  Google Scholar 

  31. Wadhwa G, Kamboj P, Raj B (2019) Design optimisation of junctionless TFET biosensor for high sensitivity. Adv Nat Sci Nanosci Nanotechnol 10(4):1–7. https://doi.org/10.1088/2043-6254/ab4878

    Article  CAS  Google Scholar 

  32. Yun S, Oh J, Seokjung Kang S, Kim Y, Kim JH, Kim G, Kim S (2019) F-shaped tunnel field-effect transistor (TFET) for the low-power application. Micromachines. 10(11):1–10. https://doi.org/10.3390/mi10110760

    Article  CAS  Google Scholar 

  33. Gupta AK, Raman A, Kumar N (2019) Design and investigation of a novel charge plasma-based Core-Shell ring-TFET: analog and linearity analysis. IEEE Trans. on Electron Dev. 66(8):3506–3512

    Article  CAS  Google Scholar 

  34. Agha FNAK, Hashim Y, Shakib MN (2020) Temperature Impact on The ION/IOFF Ratio of Gate All Around Nanowire TFET. IEEE Int. Conf. on Semiconductor Electron. (ICSE). 61–64. https://doi.org/10.1109/icse49846.2020.9166887

  35. Gupta AK, Raman A (2020) Electrostatic-doped nanotube TFET: proposal, design and investigation with linearity analysis. Silicon. 13:2401–2413. https://doi.org/10.1007/s12633-020-00584-1

    Article  CAS  Google Scholar 

  36. Shekhar D, Raman A (2020) Design and analysis of dual-gate misalignment on the performance of dopingless tunnel field effect transistor. Appl Phys A Mater Sci Process 126(441):1–9. https://doi.org/10.1007/s00339-020-03615-1

    Article  CAS  Google Scholar 

  37. Vimala P, Sharma SS, Krishna LL, Bassapuri M, Manikanta T (2020) Characteristic analysis of Si nanowire tunnel field effect transistor (NW-TFET). IEEE Int. Conf. on Electron. Comp. and Commun. Tech. (CONECCT). 1–4. https://doi.org/10.1109/CONECCT50063.2020.9198578

  38. Apoorva, Kumar N, Amin SI, Anand S (2020) Design and performance optimization of novel Core–Shell Dopingless GAA-nanotube TFET with Si0.5Ge0.5- based source. IEEE Trans Elect Dev 67(3):789–795

    Article  Google Scholar 

  39. Sharma M, Narang R, Saxena M, Gupta M (2020) Optimized DL-TFET Design for Enhancing its performance parameters by using different engineering methods. IETE Tech Rev 1-9. https://doi.org/10.1080/02564602.2020.1758226

  40. Gedam A, Acharya B, Mishra GP (2021) Junctionless silicon nanotube TFET for improved DC and radio frequency performance. Silicon. 13:167–178. https://doi.org/10.1007/s12633-020-00410-8

    Article  CAS  Google Scholar 

  41. Kumar S, Yadav DS, Saraswat S, Parmar N, Sharma R, Kumar A (2020) A novel Step-Channel TFET for better subthreshold swing and improved analog/RF characteristics. IEEE Int. Stu' Conf. on Elec., Electron. and Com. Sci. (SCEECS). 1–6. https://doi.org/10.1109/sceecs48394.2020.104

  42. Verreck D, Groeseneken G, Verhulst A (2016) The tunnel-field effect transistor. Wiley encyclopedia of electrical and electronics engineering. Wiley. https://doi.org/10.1002/047134608X.W8333

    Book  Google Scholar 

  43. Gupta AK, Raman A (2020) Performance analysis of electrostatic plasma based dopingless nanotube TFET. Appl Phys A Mater Sci Process 126(7):573. https://doi.org/10.1007/s00339-020-03736-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. G. V. M. Mohan Kumar, Chairman of G. Pullaiah College of Engineering and Technology, Kurnool, India, for encouragement and support during the present research work.

Author information

Authors and Affiliations

Authors

Contributions

Alluru Sreevani: Investigation; Formal analysis, Writing - original draft. Sandip Swarnakar: Conceptualization; Investigation; Formal analysis, Writing - original draft, Supervision. Sabbi Vamshi Krishna: Validation; Writing - review & editing.

Corresponding author

Correspondence to Sandip Swarnakar.

Ethics declarations

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Conflict of Interest

The authors declare that they have no conflicts of interest related to this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreevani, A., Swarnakar, S. & Krishna, S.V. Comparative Study of Analog Parameters for Various Silicon-Based Tunnel Field-Effect Transistors. Silicon 14, 9223–9235 (2022). https://doi.org/10.1007/s12633-022-01674-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-01674-y

Keywords

Navigation