Skip to main content
Log in

Junctionless Silicon Nanotube TFET for Improved DC and Radio Frequency Performance

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this work, a junctionless silicon nanotube TFET (JL-SiNT-TFET) is reported for low standby power and high-frequency applications. The workfunction of the core gate (CG) metal is considered similar to the outer gate electrode. The length of the CG is extended up to the source region and connected to the gate supply voltage. The inclusion of the CG offers better electrostatic controllability and enables a steep turn on capability. While maintaining low IOFF and targeting the optimum performance of the device, the JL-SiNT-TFET shows 19.8 mV/dec subthreshold swing (SS), ultra-low OFF-state leakage current, higher drive current as compared to the junctionless silicon nanowire TFET (JL-SiNW-TFET). However, temperature and substrate doping effect on device performance, core gate position optimization, the impact of channel length variation on SS, ION/IOFF ratio, and RF parameters are also investigated for choosing the most favorable values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lundstrom M (2003) Moore’s law forever? Science 299(5604):210–211

    CAS  PubMed  Google Scholar 

  2. Mohankumar N, Syamal B, Sarkar CK (Apr. 2010) Influence of channel and gate engineering on the analogand RF performance of DG MOSFETs. IEEE Trans. Electron Devices 57(4):820–826

    CAS  Google Scholar 

  3. Kilchytska V, Nve A, Vancaillie L, Levacq D, Adriaensen S, van Meer H, De Meyer K, Raynaud C, Dehan M, Raskin J-P, Flandre D (Mar. 2003) Influence of device engineering on the analog and RF performances of SOI MOSFETs. IEEE Trans. Electron Devices 50(3):577–588

    Google Scholar 

  4. Bangsaruntip S, Cohen GM, Majumdar A, Sleight JW (Sep. 2010) Universality of short-channel effects in undoped-body silicon nanowire MOSFETs. IEEE Electron Devices lett 31(9):903–905

    CAS  Google Scholar 

  5. International Technology Roadmap for Semiconductors (ITRS). [On- line]. Available:www.itrs2.net

  6. Koswatta SO, Lundstrom MS, Nikonov DE (Mar. 2009) Performance comparison between p-i-n tunneling transistors and conventional MOS- FETs. IEEE Trans Electron Devices 56(3):456–465

    CAS  Google Scholar 

  7. Zhang Q, Zhao W, Seabaugh A (Apr. 2006) Low-subthreshold-swing tunnel transistors. IEEE Electron Device Lett 27(4):297–300

    CAS  Google Scholar 

  8. Nagy D, Indalecio G, Garca Loureiro AJ, Elmessary MA, Kalna K, Seoane N (2018) FinFET versus Gate-All-Around Nanowire FET: Performance, Scaling and Variability. IEEE Journal of the Electron Devices Society 6:332–340

    CAS  Google Scholar 

  9. Huguenin JL, Bidal G, Denorme S, Fleury D, Loubet N, Pouydebasque A, Perreau P et al (2010) Gate-all-around technology: taking advantage of ballistic transport. Solid State Electron 54(9):883–889

    CAS  Google Scholar 

  10. Nattapoldamrongplasit C, Shin S, Kim H, Vega RA, Liu TJK (Oct.2011) Study of random dopant fluctuation effects in germanium-source tunnel FETs. IEEE Trans. Electron Devices 58(10):3541–3548

    Google Scholar 

  11. Graef M, Hain F, Hosenfeld F, Horst F, Farokhnejad A, Kloes A, Iniguez B (2016) “Comparative numerical analysis and analytical RDF modeling of MOSFETs and DG tunnel FETs,” 23rd International Conference on Mixed Design of Integrated Circuits and Systems, pp. 47–51

  12. Zhul Y, Yel Y, Caol Y, Hel J, Zhangl A, Hel H, Wangl H, Mal C, Hul Y, Chan M, Zhu X (2013) “Numerical study on effects of random dopant fluctuation in double gate tunneling FET,” Electron Devices and Solid-State Circuits (EDSSC), pp. 1–2

  13. Ghosh B, Akram MW (2013) Junctionless tunnel field effecttransistor. IEEE Electron Device Lett. 34(5):584–586

    CAS  Google Scholar 

  14. Kumar MJ, Janardhanan S (Oct. 2013) Doping-less tunnel field effect transistor: design and investigation. IEEE Trans. Electron Devices 60(10):3285–3290

    CAS  Google Scholar 

  15. Yadav S, Aslam M, Soni D, Sharma D (Feb. 2018) A novel hetero-material gate-Underlap electrically doped TFET for improving DC/RF and Ambipolar behavior. Superlattices andMicrostructures 117(10):9–17

    CAS  Google Scholar 

  16. Lahgere A, Sahu C, Singh J (Aug. 2015) Electrically doped dynamically configurable field-effect transistor for low-power and high-performance applications. Electron Lett 51(16):1284–1286

    CAS  Google Scholar 

  17. Vishnoi R, Kumar MJ (Mar.2015) A compact analytical model for the drain current of gate-all-around nanowire tunnel FET accurate from sub-threshold to ON-state. IEEE Trans. Electron Devices 14(2):358–362

    CAS  Google Scholar 

  18. Fahad HM, Hussain MM (Mar. 2013) High-performance silicon nanotube tunneling FET for ultralow-power logic applications. IEEE Trans. Electron Devices 60(3):1034–1039

    CAS  Google Scholar 

  19. Fahad HM, Hussain MM (Jun. 2012) Are nanotube architectures more advantageous than nanowire architectures for field effect transistors. Sci Rep 2(2):1–7

    Google Scholar 

  20. Fahad HM, Smith CE, Rojas JP, Hussain MM (Oct. 2011) Nanotube field effect transistor with Core Shell gate stacks for enhanced high-performance operation and area scaling benefits. Nano Lett 11(10):4393–4399

    CAS  PubMed  Google Scholar 

  21. ATLAS (2015) Device simulation software. Silvaco Int, Santa Clara

    Google Scholar 

  22. Chen ZX et al (Jul. 2009) Demonstration of tunneling FETs based on highly scalable vertical silicon nanowires. IEEE Electron Device Lett. 30(7):754–756

    CAS  Google Scholar 

  23. Hueting RJE., Rajasekharan B., Salm C., et al (Dec. 2008) “The charge plasma diode, “IEEE Electron Device Lett., vol. 29, no. 12, pp. 1367–1369

  24. Rajasekharan B., Hueting RJE et al (Jun. 2010) Fabrication and characterization of the charge-plasma diode. IEEE Electron Device Lett. 31(6):528–530

  25. Hanna AN, Hussain MM (2015) “Si/Ge hetero-structure nanotube tunnel field effect transistor,” J. Appl. Phys., vol. 117, no.1

  26. Hanna AN, Fahad HM, Hussain MM (Apr.2015) InAs/Si heterojunction nanotube tunnel transistors. Sci Rep 5(1):1–7

    Google Scholar 

  27. Iancu AT, Logar M, Park J, Prinz FB (Jan. 2015) Atomic layer deposition of undoped TiO2 exhibiting p type conductivity. ACS Appl Mater Interfaces 7(9):5134–5140

    CAS  PubMed  Google Scholar 

  28. Johnson RW, Hultqvist A, Bent SF (2017) “A brief review of atomic layer deposition: fundamentals to applications,” Materials today, vol. 17, no. 5

  29. Gossenberger F, Roman T, Tonigold KF, Grob A (Feb. 2014) Change of the work function of platinum electrodes induced by halide adsorption. Beilstein Journal of Nanotechnology 5(11):152–161

    PubMed  PubMed Central  Google Scholar 

  30. Hurkx GAM, Klaassen DBM, Knuvers MPG (Feb. 1992) A new recombination model for device simulation including tunneling. IEEE Trans. Electron Devices 39(2):331–338

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guru Prasad Mishra.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gedam, A., Acharya, B. & Mishra, G.P. Junctionless Silicon Nanotube TFET for Improved DC and Radio Frequency Performance. Silicon 13, 167–178 (2021). https://doi.org/10.1007/s12633-020-00410-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00410-8

Keywords

Navigation