Skip to main content
Log in

A new structure of electrically doped TFET for improving electronic characteristics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This article put forward a novel device structure of electrically doped tunnel field effect transistor to improve DC and RF performance with suppressed ambipolarity and gate leakage. For suppressing gate leakage and ambipolarity, gate underlapping has been presented, which does not significantly affect the Analog/RF parameters of the device. Further, for improving the device performance a novel initiative of implanting a T-shaped metal layer under gate electrode at source/channel interface with high-k dielectric material has been investigated in the proposed structure. In addition, optimization of gate and electrical drain underlapping is investigated in comparative manner for proposed structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Lundstrom, Moore’s law forever? Science 299(5604), 210–211 (2003)

    Article  Google Scholar 

  2. S. Bangsaruntip, G.M. Cohen, A. Majumdar, J.W. Sleight, Universality of short-channel effects in undoped-body silicon nanowire MOSFETs. IEEE Electron Device Lett. 31(9), 903–905 (2010)

    Article  ADS  Google Scholar 

  3. International Technology Roadmap for Semiconductors (ITRS). [Online]. http://www.itrs2.net. Accessed 10 July 2000

  4. S.O. Koswatta, M.S. Lundstrom, D.E. Nikonov, Performance comparison between p-i-n tunneling transistors and conventional MOSFETs. IEEE Trans. Electron Devices 56(3), 456–465 (2009)

    Article  ADS  Google Scholar 

  5. Q. Zhang, W. Zhao, A. Seabaugh, Low-subthreshold-swing tunnel transistors. IEEE Electron Device Lett. 27(4), 297–300 (2006)

    Article  ADS  Google Scholar 

  6. W. Cao et al., Subthreshold-swing physics of tunnel field-effect transistors. Nature 4(6), 067141 (2014)

    Google Scholar 

  7. N. Damrongplasit, C. Shin, S.H. Kim, R.A. Vega, T.J.K. Liu, Study of random dopant fluctuation effects in germanium-source tunnel FETs. IEEE Trans. Electron Devices 58(10), 3541–3548 (2011)

    Article  ADS  Google Scholar 

  8. M. Graef, F. Hain, F. Hosenfeld, F. Horst, A. Farokhnejad, B. Iniguez, A. Kloes, Numerical analysis and analytical modeling of RDF in DG Tunnel-FETs, in Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (2016), pp. 64–67. https://doi.org/10.1109/ULIS.2016.7440053

  9. M. Graef, F. Hain, F. Hosenfeld, F. Horst, A. Farokhnejad, A. Kloes, B. Iguez, Comparative numerical analysis and analytical RDF-modeling of MOSFETs and DG Tunnel-FETs, in Mixed Design of Integrated Circuits and Systems 23rd International Conference (2016), pp. 47–51. https://doi.org/10.1109/MIXDES.2016.7529698

  10. Y. Zhul, Y. Yel, Y. Caol, J. Hel, A. Zhangl, H. Hel, H. Wangl, C. Mal, Y. Hul, M. Chan, X. Zhu, Numerical study on effects of random dopant fluctuation in double gate tunneling FET. Electron Devices Solid State Circuits, 1–2 (2016). https://doi.org/10.1109/EDSSC.2013.6628040

  11. M.J. Kumar, S. Janardhanan, Doping-less tunnel field effect transistor: design and investigation. IEEE Trans. Electron Devices 60(10), 3285–3290 (2013)

    Article  ADS  Google Scholar 

  12. M. Kumar, S. Jit, Effects of electrostatically doped source/drain and ferroelectric gate oxide on subthreshold swing and impact ionization rate of strained-Si-on-insulator tunnel field-effect transistors. IEEE Trans. Nanotechnol. 14(4), 597–599 (2015)

    Article  ADS  Google Scholar 

  13. A. Lahgere, C. Sahu, J. Singh, Electrically doped dynamically configurable field-effect transistor for low-power and high-performance applications. Electron. Lett. 51(16), 1284–1286 (2015)

    Article  Google Scholar 

  14. H.-C. Lin, R. Lin, W. Wen-Fa, R.-P. Yang, M.-S. Tsai, T.-S. Chao, T.-Y. Huang, A novel self-aligned T-shaped gate process for deep submicron Si MOSFETs fabrication. IEEE Electron Device Lett. 19(4), 26–28 (1998)

    ADS  Google Scholar 

  15. P. Ranade et al., Work function engineering of molybdenum gate electrodes by nitrogen implantation. Electrochem. Solid State Lett. 4(11), G85–G87 (2001)

    Article  Google Scholar 

  16. R.W. Johnson, A. Hultqvist, S.F. Bent, A brief review of atomic layer deposition: fundamentals to applications. Mater. Today 17(5), 236–246 (2017)

    Article  Google Scholar 

  17. M. Putkonen et al., Thermal and plasma enhanced atomic layer deposition of SiO\(_2\) using commercial silicon precursors. Thin Solid Films 558, 93–98 (2014)

    Article  Google Scholar 

  18. M. Putkonen et al., Low temperature silicon dioxide by thermal atomic layer deposition: investigation of material properties. J. Appl. Phys. 107, 064314 (2010)

    Article  Google Scholar 

  19. J. Niinisto et al., Atomic layer deposition of HfO\(_2\) thin films exploiting novel cyclopentadienyl precursors at high temperatures. Chem. Mater. 19, 3319–3324 (2007)

    Article  Google Scholar 

  20. K. Xu, A.P. Milanov et al., Atomic layer deposition of HfO\(_2\) thin films employing a heteroleptic hafnium precursor. Chem. Vap. Depos. 18, 27–35 (2012). https://doi.org/10.1002/cvde.201106934

    Article  Google Scholar 

  21. T.W. Weidman et al., Atomic layer deposition of hafnium or zirconium alloy films. U.S. Patent, no. 9, pp. 236–467 (2016)

  22. ATLAS Device Simulation Software, Silvaco Int., Santa Clara, CA, USA (2014)

  23. A. Schenk, A model for the field and temperature dependence of SRH lifetimes in silicon. Solid State Electron 35(11), 1585–1569 (1992)

    Article  ADS  Google Scholar 

  24. J. Zhuge, A.S. Verhulst, W.G. Vandenberghe, W. Dehaene, R. Huang, Y. Wang, G. Groeseneken, Digital-circuit analysis of short-gate tunnel FETs for low-voltage applications. Semicond. Sci. Technol. 26(8), 085001 (2011)

    Article  ADS  Google Scholar 

  25. P. Chaturvedi, M. Jagadesh Kumar, Impact of gate leakage considerations in tunnel field effect transistor design. Jpn. J. Appl. Phys. 53(7), 1–21 (2014)

    Article  Google Scholar 

  26. Y. Yang, X. Tong, L.-T. Yang, P.-F. Guo, L. Fan, Y.-C. Yeo, Tunneling field-effect transistor: capacitance components and modeling. IEEE Electron Device Lett. 31(7), 752–754 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Science and Engineering Research Board, Department of Science and Technology, Government of India (established through an act of parliament), for providing the financial support to carry out this work. As this work has been implemented under the project Implementation of Sigma Delta Modulator Using Nanowire Electrically Doped Hetero Material Tunnel Field Effect Transistor (TFET) for Ultra Low Power Applications which is funded by this board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivendra Yadav.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, S., Madhukar, R., Sharma, D. et al. A new structure of electrically doped TFET for improving electronic characteristics. Appl. Phys. A 124, 517 (2018). https://doi.org/10.1007/s00339-018-1930-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1930-9

Navigation