Skip to main content
Log in

Effects of applied potential on the stress corrosion cracking behavior of 7003 aluminum alloy in acid and alkaline chloride solutions

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Potentiodynamic polarization tests and slow strain rate test (SSRT) in combination with fracture morphology observations were conducted to investigate the stress corrosion cracking (SCC) behavior of 7003 aluminum alloy (AA7003) in acid and alkaline chloride solutions under various applied potentials (E a). The results show that AA7003 is to a certain extent susceptible to SCC via anodic dissolution (AD) at open-circuit potential (OCP) and is highly susceptible to hydrogen embrittlement (HE) at high negative E a in the solutions with pH levels of 4 and 11. The susceptibility increases with negative shift in the potential when E a is less than −1000 mV vs. SCE. However, the susceptibility distinctly decreases because of the inhibition of AD when E a is equal to −1000 mV vs. SCE. In addition, the SCC susceptibility of AA7003 in the acid chloride solution is higher than that in the alkaline solution at each potential. Moreover, the effect of hydrogen on SCC increases with increasing hydrogen ion concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. B. Chen and B. Yang, Effect of heat treatment on microstructures and mechanical properties of a bulk nanostructured Al-Zn-Mg-Cu alloy, Int. J. Miner. Metall. Mater., 16(2009), No. 6, p. 672.

    Google Scholar 

  2. G. S. Peng, K. H. Chen, S. Y. Chen, and H. C. Fang, Influence of repetitious-RRA treatment on the strength and SCC resistance of Al–Zn–Mg–Cu alloy, Mater. Sci. Eng. A, 528(2011), No. 12, p. 4014.

    Article  Google Scholar 

  3. M. R. Rokni, A. Zarei-Hanzaki, and H. R. Abedi, Microstructure evolution and mechanical properties of back extruded 7075 aluminum alloy at elevated temperatures, Mater. Sci. Eng. A, 532(2012), p. 593.

    Article  Google Scholar 

  4. I. Sevim, S. Sahin, H. Cug, E. Cevik, F. Hayat, and M. Karali, Effect of aging treatment on surface roughness, mechanical properties, and fracture behavior of 6XXX and 7XXX aluminum alloys, Strength Mater., 46(2014), No. 2, p. 190.

    Article  Google Scholar 

  5. R. G. Song, F. E. Yang, C. Blawert, and W. Dietzel, Behavior of stress corrosion cracking in a magnesium alloy, J. Wuhan Univ. Technol. Mater. Sci. Ed., 24(2009), No. 1, p. 111.

    Article  Google Scholar 

  6. S. S. Kale, V. S. Raja, and A. K. Bakare, Environmentally assisted cracking behaviour of Al–Zn–Mg–Cu alloy bonded with polymer matrix composite stiffener, Corros. Sci., 75(2013), p. 318.

    Article  Google Scholar 

  7. P. A. Rometsch, Y. Zhang, and S. Knight, Heat treatment of 7xxx series aluminium alloy: some recent developments, Trans. Nonferrous Met. Soc. China, 24(2014), No. 7, p. 2003.

    Article  Google Scholar 

  8. M. B. Kannan, W. Dietzel, R. K. Singh Raman, and P. Lyon, Hydrogen-induced-cracking in magnesium alloy under cathodic polarization, Scripta Mater., 57(2007), No. 7, p. 579.

    Article  Google Scholar 

  9. J. F. Li, Z. W. Peng, C. X. Li, Z. Q. Jia, W. J. Chen, and Z. Q. Zheng, Mechanical properties, corrosion behaviors and microstructures of 7075 aluminum alloy with various aging treatments, Trans. Nonferrous Met. Soc. China, 18(2008), No. 4, p. 755.

    Article  Google Scholar 

  10. P. K. Rout, M. M. Ghosh, and K. S. Ghosh, Influence of aging treatments on alterations of microstructural features and stress corrosion cracking behavior of an Al-Zn-Mg alloy, J. Mater. Eng. Perform., 24(2015), No. 7, p. 2792.

    Article  Google Scholar 

  11. M. Mokaddem, P. Volovitch, F. Rechou, R. Oltra, and K. Ogle, The anodic and cathodic dissolution of Al and Al–Cu–Mg alloy, Electrochim. Acta, 55(2010), No. 11, p. 3779.

    Article  Google Scholar 

  12. F. Zucchi, V. Grassi, C. Monticelli, and G. Trabanelli, Hydrogen embrittlement of duplex stainless steel under cathodic protection in acidic artificial sea water in the presence of sulphide ions, Corros. Sci., 48(2006), No. 2, p. 522.

    Article  Google Scholar 

  13. X. S. Du, Y. J. Su, J. X. Li, and W. Y. Chu, Stress corrosion cracking of A537 steel in simulated marine environments, Corr. Sci., 65(2012), p. 278.

    Article  Google Scholar 

  14. A. H. S. Bueno, E. D. Moreira, P. Siqueira, and J. A. C. P. Gomes, Effect of cathodic potential on hydrogen permeation of API grade steels in modified NS4 solution, Mater. Sci. Eng. A, 597(2014), No. 5, p. 117.

    Google Scholar 

  15. C. B. Zheng, B. H. Yan, K. Zhang, and G. Yi, Electrochemical investigation on the hydrogen permeation behavior of 7075-T6 Al alloy and its influence on stress corrosion cracking, Int. J. Miner. Metall. Mater., 22(2015), No. 7, p. 729.

    Article  Google Scholar 

  16. M. Q. Wang, E. Akiyama, and K. Tsuzaki, Effect of hydrogen on the fracture behavior of high strength steel during slow strain rate test, Corros. Sci., 49(2007), No. 11, p. 4081.

    Article  Google Scholar 

  17. R. A. Ibrahim, Overview of structural life assessment and reliability: Part IV. Corrosion and hydrogen embrittlement of naval ship structures, J. Ship Prod. Des., 31(2015), No. 4, p. 241.

    Article  Google Scholar 

  18. Y. Deng, Z. M. Yin, K. Zhao, J. Q. Duan, J. Hu, and Z. B. He, Effects of Sc and Zr microalloying additions and aging time at 120°C on the corrosion behaviour of an Al–Zn–Mg alloy, Corros. Sci., 65(2012), p. 288.

    Article  Google Scholar 

  19. S. M. Li, Y. D. Li, Y. Zhang, J. H. Liu, and M. Yu, Effect of intermetallic phases on the anodic oxidation and corrosion of 5A06 aluminum alloy, Int. J. Miner. Metall. Mater., 22(2015), No. 2, p. 167.

    Article  Google Scholar 

  20. D. Wang, D. R. Ni, and Z. Y. Ma, Effect of pre-strain and two-step aging on microstructure and stress corrosion cracking of 7050 alloy, Mater. Sci. Eng. A, 494(2008), No. 1-2, p. 360.

    Article  Google Scholar 

  21. K. S. Ghosh, N. Gao, and M. J. Starink, Characterisation of high pressure torsion processed 7150 Al–Zn–Mg–Cu alloy, Mater. Sci. Eng. A, 552(2012), p. 164.

    Article  Google Scholar 

  22. D. K. Xu, N. Birbilis, D. Lashansky, P. A. Rometsch, and B. C. Muddle, Effect of solution treatment on the corrosion behaviour of aluminium alloy AA7150: optimisation for corrosion resistance, Corros. Sci., 53(2011), No. 1, p. 217.

    Article  Google Scholar 

  23. M. B. Kannan and V. S. Raja, Influence of heat treatment and scandium addition on the electrochemical polarization behavior of Al-Zn-Mg-Cu-Zr alloy, Metall. Mater. Trans. A, 38(2007), No. 11, p. 2843.

    Article  Google Scholar 

  24. K. S. Ghosh, S. Mukhopadhyay, B. Konar, and B. Mishra, Study of aging and electrochemical behaviour of Al-Li-Cu-Mg alloys, Mater. Corros., 64(2013), No. 10, p. 890.

    Google Scholar 

  25. T. F. Cui, D. X. Liu, P. A. Shi, J. J. Liu, Y. H. Yi, and H. L. Zhou, Effect of NaCl concentration, pH value and tensile stress on the galvanic corrosion behavior of 5050 aluminum alloy, Mater. Corros., 67(2016), No. 1, p. 72.

    Article  Google Scholar 

  26. D. Delafosse and T. Magnin, Hydrogen induced plasticity in stress corrosion cracking of engineering systems, Eng. Fract. Mech., 68(2001), No. 6, p. 693.

    Article  Google Scholar 

  27. R. Miresmaeili, L. J. Liu, and H. Kanayama, A possible explanation for the contradictory results of hydrogen effects on macroscopic deformation, Int. J. Pressure Vessel. Piping, 99-100(2012), p. 34.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren-guo Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Xy., Song, Rg., Sun, B. et al. Effects of applied potential on the stress corrosion cracking behavior of 7003 aluminum alloy in acid and alkaline chloride solutions. Int J Miner Metall Mater 23, 819–826 (2016). https://doi.org/10.1007/s12613-016-1296-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-016-1296-y

Keywords

Navigation