Skip to main content

Advertisement

Log in

Electrochemical investigation on the hydrogen permeation behavior of 7075-T6 Al alloy and its influence on stress corrosion cracking

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The hydrogen permeation behavior and stress corrosion cracking (SCC) susceptibility of precharged 7075-T6 Al alloy were investigated in this paper. Devanthan–Stachurski (D-S) cell tests were used to measure the apparent hydrogen diffusivity and hydrogen permeation current density of specimens immersed in 3.5wt% NaCl solution. Electrochemical experiment results show that the SCC susceptibility is low during anodic polarization. Both corrosion pits and hydrogen-induced cracking are evident in scanning electron microscope images after the specimens have been charging for 24 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.J. Yan, K.W. Gao, and C.F. Chen, Hydrogen-induced cracking behaviors of Incoloy alloy 825, Int. J. Miner. Metall. Mater., 17(2010), No. 1, p. 58.

    Article  Google Scholar 

  2. Chuanbo Zheng, Guo Yi, Temperature effect on hydrogen permeation of X56 steel, Mater. Performance, 50(2011), No. 4, p. 72.

    Google Scholar 

  3. R.H. Jones, D.R. Baer, M.J. Danielson, and J.S. Vetrano, Role of Mg in the stress corrosion cracking of an Al-Mg alloy, Metall. Mater. Trans. A, 32(2001), No. 7, p. 1699.

    Article  Google Scholar 

  4. D. Najjar, T. Magnin, and T.J. Warner, Influence of critical surface defects and localized competition between dissolution and hydrogen effects during stress corrosion cracking of a 7050 aluminum alloy, Mater. Sci. Eng. A., 238(1997), No. 2, p. 293.

    Article  Google Scholar 

  5. N. Takano, Hydrogen diffusion and embrittlement in 7075 aluminum alloy, Mater. Sci. Eng. A, 483-484(2008), p. 336.

    Article  Google Scholar 

  6. T.M. Yue, L.J. Lan, C.F. Dong, and C.P. Chan, Stress corrosion cracking behaviour of laser treated aluminum alloy 7075 using a slow strain rate test, Mater. Sci. Technol., 21(2005), No. 8, p. 961.

    Article  Google Scholar 

  7. N. Winzer, A. Atrens, W. Dietzel, V.S. Raja, G. Song, and K.U. Kainer, Characterisation of stress corrosion cracking (SCC) of Mg-Al alloys, Mater. Sci. Eng. A., 488(2008), No. 1-2, p. 339.

    Article  Google Scholar 

  8. E.U. Lee, A.K. Vasudevan, and G. Glinka, Environmental effects on low cycle fatigue of 2024-T351 and 7075-T651 aluminum alloys, Int. J. Fatigue, 31(2009), No. 11-12, p. 1938.

    Article  Google Scholar 

  9. A. Thakur, R. Raman, and S.N. Malhotra, Hydrogen embrittlement studies of aged and retrogressed-reaged Al–Zn–Mg alloys, Mater. Chem. Phys., 101(2007), No. 2-3, p. 441.

    Article  Google Scholar 

  10. C.F. Dong, K. Xiao, Z.Y. Liu, W.J. Yang, and X.G. Li, Hydrogen induced cracking of X80 pipeline steel, Int. J. Miner. Metall. Mater., 17(2010), No. 5, p. 579.

    Article  Google Scholar 

  11. G. Kotsikos, J.M. Sutcliffe, and N.J.H. Holroyd, Hydrogen effects in the corrosion fatigue behaviour of the white zone of 7xxx series aluminum alloy welds, Corros. Sci., 42(2000), No. 1, p. 17.

    Article  Google Scholar 

  12. Al.Th. Kermanidis, P.V. Petroyiannis, and Sp.G. Pantelakis, Fatigue and damage tolerance behaviour of corroded 2024 T351 aircraft aluminum alloy, Theor. Appl. Fract. Mech., 43(2005), No. 1, p. 121.

    Article  Google Scholar 

  13. Y. Zhang, R.G. Song, and P.H. Tang, Hydrogen embrittlement susceptibility and Mg-H interaction in 7075 aluminum alloy, J. Chin. Soc. Corros. Prot., 30(2010), No. 5, p. 364.

    Google Scholar 

  14. Y. Reda, R. Abdel-Karim, and I. Elmahallawi, Improvements in mechanical and stress corrosion cracking properties in Al-alloy 7075 via retrogression and reaging, Mater. Sci. Eng. A., 485(2008), No. 1-2, p. 468.

    Article  Google Scholar 

  15. H. Kamoutsi, G.N. Haidemenopoulos, V. Bontozoglou, and S. Pantelakis, Corrosion-induced hydrogen embrittlement in aluminum alloy 2024, Corros. Sci., 48(2006), No. 5, p. 1209.

    Article  Google Scholar 

  16. A.M. Thad, K. Paul, and D. Andrew, Evaluation of oxidation and hydrogen permeation in Al-containing stainless steel alloys, Mater. Sci. Eng. A, 424(2006), No. 1-2, p. 33.

    Article  Google Scholar 

  17. M.J. Danielson, Use of the Devanathan–Stachurski cell to measure hydrogen permeation in aluminum alloys, Corros. Sci., 44(2002), No. 4, p. 829.

    Article  Google Scholar 

  18. A.I. Onuchukwu and S. Trasatti, Hydrogen permeation into aluminum alloy 1060 as a results of corrosion in alkaline medium. Basic features of the process, Electrochim. Acta, 33(1988), No. 10, p. 1425.

    Article  Google Scholar 

  19. C. Nishimura, T. Ozaki, M. Komaki, and Y. Zhang, Hydrogen permeation and transmission electron microscope observations of V-Al alloys, J. Alloys Compd., 356-357(2003), p. 295.

    Article  Google Scholar 

  20. Y.J. Ouyang, G. Yu, A.L. Ou, L. Hu, and W.J. Xu, Double electrolyte sensor for monitoring hydrogen permeation rate in steels, Corros. Sci., 53(2011), No. 6, p. 2247.

    Article  Google Scholar 

  21. C.B. Zheng, G. Yi, Y.M. Gao, and K. Zhang, Hydrogen permeation and stress corrosion cracking sensitivity of 7075-T6 Al alloy in marine environment, Chin. J. Nonferrous Met., 23(2013), No. 8, p. 2118.

    Article  Google Scholar 

  22. F.D. Fischer, G. Mori, and J. Svoboda, Modelling the influence of trapping on hydrogen permeation in metals, Corros. Sci., 76(2013), p. 382.

    Article  Google Scholar 

  23. R.J. Gest and A.R. Troiano, Stress corrosion and hydrogen embrittlement in an aluminum alloy, Corrosion, 30(1974), No. 8, p. 274.

    Article  Google Scholar 

  24. M. Kupka, K. Stepien, and B. Losiewicz, Effect of plastic working on hydrogen permeability in an FeAl-based alloy, J. Alloys Compd., 482(2009), No. 1-2, p. 371.

    Article  Google Scholar 

  25. C.B. Zheng, Y.L. Huang, Q. Yu, C.Y. Huo, and Y.L. Huang, Effect of H2S on stress corrosion cracking and hydrogen permeation behaviour of X56 grade steel in atmospheric environment, Corros. Eng. Sci. Technol., 44(2009), No. 2, p. 96.

    Article  Google Scholar 

  26. S.J. Chen, Q.M. Yuan, J.P. He, and X.L. Liu, Potential fluctuations of 7075 aluminum alloy under thin electrolyte layers, J. Electrochem., 11(2005), No. 2, p. 167.

    Google Scholar 

  27. G.D. Sulka and P. Józwik, Electrochemical behavior of Ni3Al-based intermetallic alloys in NaOH, Intermetallics., 19(2011), No. 7, p. 974.

    Article  Google Scholar 

  28. Y. Liu, Y.L. Huang, and B.R. Hou, Study on stress corrosion behavior of 16M steel with ZnAl hot-dipped coating in seawater, China Surf. Eng., 18(2005), No. 3, p. 45.

    Google Scholar 

  29. W.Y. Chu, K.W. Gao, L.J. Qiao, and Y. Zhang, An investigation of corrosion-induced stress during SCC, J. Univ. Sci. Technol. Beijing., 10(2003), No. 1, p. 1.

    Google Scholar 

  30. E. Lunarska and O. Chernyayeva, Effect of the self-induced strain on the hydrogen permeation through Al, Int. J. Hydrogen Energy, 31(2006), No. 2, p. 237.

    Article  Google Scholar 

  31. G.K. Zhang, X.L. Wang, Y.F. Xiong, Y. Shi, J.F. Song, and D.L. Luo, Mechanism for adsorption, dissociation and diffusion of hydrogen in hydrogen permeation barrier of a-Al2O3: a density function theory study, Int. J. Hydrogen Energy, 38(2013), No. 2, p. 1157.

    Article  Google Scholar 

  32. H.R. Zhou, X.G. Li, C.F. Dong, K. Xiao, and T. Li, Corrosion behavior of aluminum alloys in Na2SO4 solution using the scanning electrochemical microscopy technique, Int. J. Miner. Metall. Mater., 16(2009), No. 1, p. 84.

    Article  Google Scholar 

  33. A.S. El-Amoush, Erratum to “An investigation of mechanical degradation of AlMg1SiCu aluminum alloy by hydrogen”, J. Alloys Compd., 440(2007), No. 1-2, p. 380.

    Article  Google Scholar 

  34. R.G. Song, W. Dietzel, B.J. Zhang, W.J. Liu, M.K. Tseng, and A. Atrens, Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu alloy, Acta Mater., 52(2004), No. 16, p. 4727.

    Article  Google Scholar 

  35. F. Anderatta, H. Terryn, and J.H.W. de Wit, Corrosion behaviour of different tempers of AA7075 aluminium alloy, Electrochim. Acta, 49(2004), No. 17-18, p. 2851.

    Article  Google Scholar 

  36. X.P. Ren, F.F. Zhang, Q.M. Guo, H.L. Hou, and Y.Q. Wang, Hydrogen absorption behavior of TA15 alloy, Int. J. Miner. Metall. Mater., 18(2011), No. 2, p. 210.

    Article  Google Scholar 

  37. H. Sheng, C.F. Dong, K. Xiao, X.G. Li, and L. Lu, Anodic dissolution of a crack tip at AA 2024-T351 in 5wt% NaCl solution, Int. J. Miner. Metall. Mater., 19(2012), No. 10, p. 939.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-bo Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Cb., Yan, Bh., Zhang, K. et al. Electrochemical investigation on the hydrogen permeation behavior of 7075-T6 Al alloy and its influence on stress corrosion cracking. Int J Miner Metall Mater 22, 729–737 (2015). https://doi.org/10.1007/s12613-015-1128-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-015-1128-5

Keywords

Navigation