Skip to main content
Log in

Behavior of stress corrosion cracking in a magnesium alloy

  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Slow strain rate testing (SSRT) was employed to study the stress corrosion cracking (SCC) behavior of ZE41 magnesium alloy in 0.01 M NaCl solution. Smooth tensile specimens with different thicknesses were strained dynamically in both longitudinal and transverse direction under permanent immersions at a strain rate of 10−6 s−1. It is found that ZE41 magnesium alloy is susceptible to SCC in 0.01 M NaCl solution. The SCC susceptibility of the thinner specimen is lower than that of the thicker specimen. Also, the longitudinal specimens are slightly more susceptible to SCC than the transverse specimens. The SCC mechanism of magnesium alloy is attributed to the combination of anodic dissolution with hydrogen embrittlement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A Atrens, Z F Wang. Stress corrosion cracking[J]. Mater Forum, 1995, 19: 9–34

    CAS  Google Scholar 

  2. R G Song, C Blawert, W Dietzel, et al. A Study on Stress Corrosion Cracking and Hydrogen Embrittlement of AZ31 Magnesium Alloy[J]. Mater Sci Eng A, 2005, 399: 308–317

    Article  CAS  Google Scholar 

  3. R G Song, M K Tseng, B J Zhang, et al. Grain Boundary Segregation and Hydrogen-induced Fracture in 7050 Aluminium Alloy[J]. Acta Mater, 1996, 44: 3 241–3 248

    Article  CAS  Google Scholar 

  4. R G Song, W Dietzel, B J Zhang, et al. Stress Corrosion Cracking and Hydrogen Embrittlement of an Al-Zn-Mg-Cu Alloy[J]. Acta Mater, 2004, 52: 4 727–4 743

    Article  CAS  Google Scholar 

  5. R G Song, M G Zeng. Grain Boundary Segregation and Intergranular Brittleness in High Strength Aluminum Alloys[ J]. Trans Nonferrous Met Soc China, 1995, 5: 97–100

    CAS  Google Scholar 

  6. G Ben-Hamu, A Eliezer, E M Gutman, et al. Mechanoelectrochemical Behavior of Magnesium Alloys[J]. Mater Sci Eng A, 2006, 420: 109–114

    Article  CAS  Google Scholar 

  7. B T Lu, J L Luo. Relationship between Yield Strength and Near-neutral pH Stress Corrosion Cracking Resistance of Pipeline Steels-an Effect of Microstructure[J]. Corrosion, 2006, 62: 129–140

    Article  CAS  Google Scholar 

  8. B Y Fang, E H Han, J Q Wang, et al. Influence of Strain Rate on Near-neutral pH Environmentally Assisted Cracking of Pipeline Steels (in Chinese)[J]. Acta Metall Sinica, 2005, 41:1 174–1 182

    CAS  Google Scholar 

  9. E Cerri, M Cabibbo, E Evangelista. Microstructural Evolution during High-temperature Exposure in a Thixocast Magnesium Alloy[J]. Mater Sci Eng A, 2002, 333: 208–217

    Article  Google Scholar 

  10. B L Mordike, T Ebert. Magnesium-properties-applicationspotential[J]. Mater Sci Eng A, 2001, 302: 37–45

    Article  Google Scholar 

  11. H Friedrich, S Schumann. Research for a “New Age of Magnesium” in the Automotive Industry[J]. J Mater Process Tech, 2001, 117: 276–281

    Article  CAS  Google Scholar 

  12. G Y Yuan, Y S Sun, W J Ding. Effects of Bismuth and Antimony Additions on the Microstructure and Mechanical Properties of AZ91 Magnesium Alloy[J]. Mater Sci Eng A, 2001, 308: 38–44

    Article  Google Scholar 

  13. E Ghali, W Dietzel, K U Kainer. General and Localized Corrosion of Magnesium Alloys: a Critical Review[J]. J Mater Eng Perform, 2004, 13: 7–23

    Article  CAS  Google Scholar 

  14. H Inoue, K Sugahara, A Yamamoto, et al. Corrosion Rate of Magnesium and its Alloys in Buffered Chloride Solutions[J]. Corros Sci, 2002, 44: 603–610

    Article  CAS  Google Scholar 

  15. G L Song, A Atrens. Corrosion Mechanisms of Magnesium Alloys[J]. Adv Eng Mater, 1999, 1: 11–33

    Article  CAS  Google Scholar 

  16. N Winzer, A Atrens, G L Song, et al. A Critical Review of the Stress Corrosion Cracking (SCC) of Magnesium Alloys[ J]. Adv Eng Mater, 2005, 7: 659–693

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renguo Song  (宋仁国).

Additional information

Funded by the National Natural Science Foundation of China (No. 50771093)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, R., Yang, F., Blawert, C. et al. Behavior of stress corrosion cracking in a magnesium alloy. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 24, 111–113 (2009). https://doi.org/10.1007/s11595-009-1111-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-009-1111-y

Key words

Navigation