Skip to main content
Log in

Single transition-metal atoms anchored on a novel Dirac-dispersive π-π conjugated holey graphitic carbon nitride substrate: computational screening toward efficient bifunctional OER/ORR electrocatalysts

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Nonprecious-metal-group single-metal-atom catalysts with bifunctional catalytic capabilities toward the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are highly sought after in energy-conversion and storage technology. However, producing renewable and sustainable energy sources remains challenging. Currently, single-transition metal atoms anchored on π-π conjugated two-dimensional (2D) graphitic carbon nitride substrates form π-d conjugated conductive channels that enhance the overall electrocatalytic activity. Herein, first-principles calculations were carried out to design and demonstrate a novel macropore graphitic carbon nitride (g-C10N3) as a promising 2D electrocatalyst substrate to support single-transition metal (TM, from Sc to Au). The “donation-acceptance” charge interaction in the TM-N2 moiety effectively balances the adsorption strength of oxygenated intermediates in Ni@g-C10N3 and Rh@g-C10N3, making them effective bifunctional OER/ORR electrocatalysts with IrO2/Pt-beyond overpotentials being as low as 0.39/0.38 V and 0.54/0.44 V, respectively. Additionally, they possess high stability and conductivity and are less susceptible to oxidation and corrosion under working conditions. This guarantees high activity under ambient conditions. Then, the origin of the OER/ORR activity of TM@g-C10N3 is explained using multilevel descriptors: intrinsic φ, Bader charge, integral crystal orbital Hamilton population (ICOHP), bond length, and d-band center (εd). In particular, for optimal Ni@g-C10N3, the clear hybridization between the Ni-d orbital and surface O-p orbital causes the paired electrons to occupy the bonding orbitals. This enables OH* to be adsorbed on the Ni@g-C10N3, thereby achieving the highest catalytic performance.

Graphical abstract

摘要

(开发用于析氧反应 (OER) 和氧还原反应 (ORR) 的非贵金属族单金属原子双功能催化剂在能源转换和储存技术中备受追捧, 但在生产可再生和可持续能源方面仍然具有挑战性。目前, 锚定在Π-Π共轭二维 (2D) 石墨氮化碳基底上的单个过渡金属原子形成Π-d共轭导电通道, 有助于提高整体电催化活性。本文以第一性原理计算方法预测了一种新的多孔石墨氮化碳 (g-C10N3) 可以作为一种有前途的单过渡金属 (TM, 从Sc到Au) 锚定的2D电催化剂基底, 并且TM-N2部分可以利用“捐赠-接受”电荷相互作用机制去有效地平衡吸附在Ni@g-C10N3和Rh@g-C10N3上的含氧中间体的吸附强度, 进而使它们成为高效的双功能OER/ORR电催化剂, 甚至具有优于IrO2/Pt的OER/ORR过电势(Ni@g-C10N3和Rh@g-C10N3的过电势分别为0.39/0.38 V和0.54/0.44 V) 。此外, 高稳定性、导电性, 在工作条件下不易氧化和腐蚀的特性保证了它们在催化环境条件下的高活性。然后用多个描述符解释TM@g-C10N3的催化活性来源: 本征描述符 (φ) 、Bader电荷、积分晶体轨道哈密顿布居 (ICOHP) 、键长和d带中心 (ɛd) 。特别是对于Ni@g-C10N3中的Ni-d轨道和在其表面上OH*中的O-p轨道之间的明显杂化导致了配对的电子占据成键轨道, 从而使OH*合适地吸附在Ni@g-C10N3上, 进而实现高效的催化性能。).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhao WM, Shen JD, Xu XJ, He WX, Liu L, Chen ZH, Liu J. Functional catalysts for polysulfide conversion in Li-S batteries: from micro/nanoscale to single atom. Rare Met. 2022;41(4):1080. https://doi.org/10.1007/s12598-021-01865-3.

    Article  CAS  Google Scholar 

  2. Wang Y, Wu J, Tang SH, Yang JR, Ye CL, Chen J, Lei YP, Wang DS. Synergistic Fe−Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew Chem Int Ed. 2023;62(15): e202219191. https://doi.org/10.1002/anie.202219191.

    Article  CAS  Google Scholar 

  3. Tong JH, Ma WM, Bo LL, Li T, Li WY, Li YL, Zhang Q. Nitrogen-doped hollow carbon spheres as highly effective multifunctional electrocatalysts for fuel cells, Zn–air batteries, and water-splitting electrolyzers. J Power Sources. 2019;441: 227166. https://doi.org/10.1016/j.jpowsour.2019.227166.

    Article  CAS  Google Scholar 

  4. Ling CY, Shi L, Ouyang YX, Zeng XC, Wang JL. Nanosheet supported single-metal atom bifunctional catalyst for overall water splitting. Nano Lett. 2017;17(8):5133. https://doi.org/10.1021/acs.nanolett.7b02518.

    Article  CAS  PubMed  Google Scholar 

  5. Jiao L, Wei WB, Li XF, Hong CB, Han SG, Khan MI, Zhu QL. Value-added formate production from selective ethylene glycol oxidation based on cost-effective self-supported MOF nanosheet arrays. Rare Met. 2022;41(11):3654. https://doi.org/10.1007/s12598-022-02072-4.

    Article  CAS  Google Scholar 

  6. Xie X, Zhang XD, Tian WY, Zhang XG, Ding J, Liu YS, Lu SY. Tri-functional Ru-RuO2/Mn-MoO2 composite: a high efficient electrocatalyst for overall water splitting and rechargeable Zn–air batteries. Chem Eng J. 2023;468:143760. https://doi.org/10.1016/j.cej.2023.143760.

    Article  CAS  Google Scholar 

  7. Liu ML, Zhao ZP, Duan XF, Huang Y. Nanoscale structure design for high-performance Pt-based ORR catalysts. Adv Mater. 2019;31(6):1802234. https://doi.org/10.1002/adma.201802234.

    Article  CAS  Google Scholar 

  8. Liu Q, Wang L, Fu HJ. Research progress on the construction of synergistic electrocatalytic ORR/OER self-supporting cathodes for zinc–air batteries. J Mater Chem A. 2023;11(9):4400. https://doi.org/10.1039/D2TA09626A.

    Article  CAS  Google Scholar 

  9. Man IC, Su HY, Calle-Vallejo F, Hansen HA, Martínez JI, Inoglu NG, Kitchin J, Jaramillo TF, Nørskov JK, Rossmeisl J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem. 2011;3(7):1159. https://doi.org/10.1002/cctc.201000397.

    Article  CAS  Google Scholar 

  10. Greeley J, Stephens I, Bondarenko A, Johansson TP, Hansen HA, Jaramillo T, Rossmeisl J, Chorkendorff I, Nørskov JK. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat Chem. 2009;1(7):552. https://doi.org/10.1038/nchem.367.

    Article  CAS  PubMed  Google Scholar 

  11. Badruzzaman A, Yuda A, Ashok A, Kumar A. Recent advances in cobalt based heterogeneous catalysts for oxygen evolution reaction. Inorg Chim Acta. 2020;511:119854. https://doi.org/10.1016/j.ica.2020.119854.

    Article  CAS  Google Scholar 

  12. Li HX, Li G. Novel palladium-based nanomaterials for multifunctional ORR/OER/HER electrocatalysis. J Mater Chem A. 2023;11(17):9383. https://doi.org/10.1039/D3TA01059G.

    Article  CAS  Google Scholar 

  13. Zhao YG, Adiyeri Saseendran DP, Huang C, Triana CA, Marks WR, Chen H, Zhao H, Patzke GR. Oxygen evolution/reduction reaction catalysts: from in situ monitoring and reaction mechanisms to rational design. Chem Rev. 2023;123(9):6257. https://doi.org/10.1021/acs.chemrev.2c00515.

    Article  CAS  PubMed  Google Scholar 

  14. Liu XY, Wu JF, Luo ZY, Liu P, Tian Y, Wang XW, Li HX. Co2P-assisted atomic Co–N4 active sites with a tailored electronic structure enabling efficient ORR/OER for rechargeable Zn–Air batteries. ACS Appl Mater Interfaces. 2023;15(7):9240. https://doi.org/10.1021/acsami.2c19713.

    Article  CAS  Google Scholar 

  15. Lin KJ, Wang X, Zhang Q, Fang CY, Zhou JY. An emerging bidirectional auxetic post-phosphorene ε-SnO monolayer: a promising Janus semiconductor with photocatalytic activity for solar-driven water splitting reaction. Int J Hydrogen Energy. 2022;47(59):24761. https://doi.org/10.1016/j.ijhydene.2022.05.236.

    Article  CAS  Google Scholar 

  16. Wang DH, Ma KK, Hao JM, Zhang WY, Shi HF, Wang CD, Xiong ZH, Bai ZM, Chen F-R, Guo JJ, Xu BS, Yan XQ, Gu YS. Engineering single-atom catalysts as multifunctional polysulfide and lithium regulators toward kinetically accelerated and durable lithium-sulfur batteries. Chem Eng J. 2023;466:143182. https://doi.org/10.1016/j.cej.2023.143182.

    Article  CAS  Google Scholar 

  17. Creus J, Miola M, Pescarmona PP. Unraveling and overcoming the challenges in the electrocatalytic reduction of fructose to sorbitol. Green Chem. 2023;25(4):1658. https://doi.org/10.1039/D2GC04451J.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature. 2012;488(7411):294. https://doi.org/10.1038/nature11475.

    Article  CAS  PubMed  Google Scholar 

  19. Liu JB, Gong HS, Ye GL, Fei HL. Graphene oxide-derived single-atom catalysts for electrochemical energy conversion. Rare Met. 2022;41(5):1703. https://doi.org/10.1007/s12598-021-01904-z.

    Article  CAS  Google Scholar 

  20. Xu XH, Zhang YJ, Miao XY. Synthesis and electrocatalytic performance of 3D coral-like NiCo-P. Chin J Rare Met. 2022;46(11):1449. https://doi.org/10.13373/j.cnki.cjrm.XY22080001.

    Article  CAS  Google Scholar 

  21. Gao WW, Liu SH, Sun GX, Zhang C, Pan Y. Single-atom catalysts for hydrogen activation. Small. 2023;19(26):2300956. https://doi.org/10.1002/smll.202300956.

    Article  CAS  Google Scholar 

  22. Mukadam Z, Liu SH, Pedersen A, Barrio J, Fearn S, Sarma SC, Titirici M-M, Scott SB, Stephens IEL, Chan K, Mezzavilla S. Furfural electrovalorisation using single-atom molecular catalysts. Energy Environ Sci. 2023;16(7):2934. https://doi.org/10.1039/D3EE00551H.

    Article  CAS  Google Scholar 

  23. Humayun M, Israr M, Khan A, Bououdina M. State-of-the-art single-atom catalysts in electrocatalysis: from fundamentals to applications. Nano Energy. 2023;113:108570. https://doi.org/10.1016/j.nanoen.2023.108570.

    Article  CAS  Google Scholar 

  24. Zhang TK, Zhang B, Peng Q, Zhou J, Sun ZM. Mo2B2 MBene-supported single-atom catalysts as bifunctional HER/OER and OER/ORR electrocatalysts. J Mater Chem A. 2021;9(1):433. https://doi.org/10.1039/D0TA08630D.

    Article  CAS  Google Scholar 

  25. Zhang XF, Zhang Q, Cui JW, Yan J, Liu JQ, Wu YC. New insights into the key bifunctional role of sulfur in Fe–N–C single-atom catalysts for ORR/OER. Nanoscale. 2022;14(8):3212. https://doi.org/10.1039/D1NR07851H.

    Article  CAS  PubMed  Google Scholar 

  26. Ying YR, Fan K, Luo X, Qiao JL, Huang HT. Unraveling the origin of bifunctional OER/ORR activity for single-atom catalysts supported on C2N by DFT and machine learning. J Mater Chem A. 2021;9(31):16860. https://doi.org/10.1039/D1TA04256D.

    Article  CAS  Google Scholar 

  27. Kan DX, Wang DS, Cheng YJ, Lian RQ, Sun B, Chen KY, Huo WT, Wang YZ, Chen G, Wei YJ. Designing of efficient bifunctional ORR/OER Pt single-atom catalysts based on O-terminated MXenes by first-principles calculations. ACS Appl Mater Interfaces. 2021;13(44):52508. https://doi.org/10.1021/acsami.1c12893.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang YF, He QF, Chen ZH, Chi YQ, Sun JW, Yuan D, Zhang LX. Hierarchically porous Co@N-doped carbon fiber assembled by MOF-derived hollow polyhedrons enables effective electronic/mass transport: an advanced 1D oxygen reduction catalyst for Zn-air battery. J Energy Chem. 2023;76:117. https://doi.org/10.1016/j.jechem.2022.09.012.

    Article  CAS  Google Scholar 

  29. Liu AP, Chen ZX, Wang ZH, Fang L, Huang YZ. Two-dimensional mxenes-Ag micro-nano mixed film for surface-enhanced raman research. Chin J Rare Met. 2022;46(8):989. https://doi.org/10.13373/j.cnki.cjrm.XY22060028.

    Article  Google Scholar 

  30. Fang CY, Wang X, Zhang Q, Zhou JY. First-principles calculations on semiconducting ε-GeS and ε-SnS monolayer nanosheets with photocatalytic activity for sunlight-driven water splitting. ACS Appl Nano Mater. 2022;5(3):3900. https://doi.org/10.1021/acsanm.1c04495.

    Article  CAS  Google Scholar 

  31. Wang YR, Hu RM, Li YC, Wang FH, Shang JX, Shui JL. High-throughput screening of carbon-supported single metal atom catalysts for oxygen reduction reaction. Nano Res. 2022;15(2):1054. https://doi.org/10.1007/s12274-021-3598-2.

    Article  CAS  Google Scholar 

  32. Wang XT, Niu H, Wan XH, Wang AY, Wang FR, Guo YZ. Impact of coordination environment on single-atom-embedded C3N for oxygen electrocatalysis. ACS Sustainable Chem Eng. 2022;10(23):7692. https://doi.org/10.1021/acssuschemeng.2c01648.

    Article  CAS  Google Scholar 

  33. Wang X, Zhang Q, Hao WJ, Fang CY, Zhou JY, Xu JC. A novel porous graphitic carbon nitride (g-C7N3) substrate: prediction of metal-based π–d conjugated nanosheets toward the highly active and selective electrocatalytic nitrogen reduction reaction. J Mater Chem A. 2022;10(28):15036. https://doi.org/10.1039/D2TA02887E.

    Article  CAS  Google Scholar 

  34. Wang CL, Lv ZH, Yang WX, Feng X, Wang B. A rational design of functional porous frameworks for electrocatalytic CO2 reduction reaction. Chem Soc Rev. 2023;52(4):1382. https://doi.org/10.1039/D2CS00843B.

    Article  CAS  PubMed  Google Scholar 

  35. Lv XS, Wei W, Wang H, Huang BB, Dai Y. Holey graphitic carbon nitride (g-CN) supported bifunctional single atom electrocatalysts for highly efficient overall water splitting. Appl Catal B: Environ. 2020;264:118521. https://doi.org/10.1016/j.apcatb.2019.118521.

    Article  CAS  Google Scholar 

  36. Niu H, Wang XT, Shao C, Liu YS, Zhang ZF, Guo YZ. Revealing the oxygen reduction reaction activity origin of single atoms supported on g-C3N4 monolayers: a first-principles study. J Mater Chem A. 2020;8(14):6555. https://doi.org/10.1039/D0TA00794C.

    Article  CAS  Google Scholar 

  37. Zhou YN, Gao GP, Kang J, Chu W, Wang LW. Computational screening of transition-metal single atom doped C9N4 monolayers as efficient electrocatalysts for water splitting. Nanoscale. 2019;11(39):18169. https://doi.org/10.1039/C9NR05991A.

    Article  CAS  PubMed  Google Scholar 

  38. Tan R, Li ZH, Zhou P, Zou ZC, Li WQ, Sun LZ. Dirac semimetals in homogeneous holey carbon nitride monolayers. J Phys Chem C. 2021;125(11):6082. https://doi.org/10.1021/acs.jpcc.0c09900.

    Article  CAS  Google Scholar 

  39. Zhang Q, Wang X, Zhang FC, Fang CY, Liu D, Zhou QJ. A high-throughput screening toward efficient nitrogen fixation: transition metal single-atom catalysts anchored on an emerging π–π conjugated graphitic carbon nitride (g-C10N3) substrate with dirac dispersion. ACS Appl Mater Inter. 2023;15(9):11812. https://doi.org/10.1021/acsami.2c22519.

    Article  CAS  Google Scholar 

  40. Yang DR, Wang X. 2D π-conjugated metal–organic frameworks for CO2 electroreduction. SmartMat. 2022;3(1):54. https://doi.org/10.1002/smm2.1102.

    Article  CAS  Google Scholar 

  41. Zhou J, Wang FF, Wang HQ, Hu SX, Zhou WJ, Liu H. Ferrocene-induced switchable preparation of metal-nonmetal codoped tungsten nitride and carbide nanoarrays for electrocatalytic HER in alkaline and acid media. Nano Res. 2023;16(2):2085. https://doi.org/10.1007/s12274-022-4901-6.

    Article  CAS  Google Scholar 

  42. Wang BQ, Chen SH, Zhang ZD, Wang DS. Low-dimensional material supported single-atom catalysts for electrochemical CO2 reduction. SmartMat. 2022;3(1):84. https://doi.org/10.1002/smm2.1101.

    Article  CAS  Google Scholar 

  43. Zhang K, Liang X, Wang L, Sun K, Wang Y, Xie Z, Wu Q, Bai X, Hamdy MS, Chen H, Zou X. Status and perspectives of key materials for PEM electrolyzer. Nano Res Energy. 2022;1:e9120032. https://doi.org/10.26599/NRE.2022.9120032.

    Article  Google Scholar 

  44. Qiu N, Li JJ, Wang HQ, Zhang ZC. Emerging dual-atomic-site catalysts for electrocatalytic CO2 reduction. Sci China Mater. 2022;65(12):3302. https://doi.org/10.1007/s40843-022-2189-x.

    Article  CAS  Google Scholar 

  45. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999;59(3):1758. https://doi.org/10.1103/PhysRevB.59.1758.

    Article  CAS  Google Scholar 

  46. Blochl P, Blöchl E, Blöchl P. Projected augmented-wave method. Phys Rev B Condens Matter Mater Phys. 1994;50:17953. https://doi.org/10.1103/PhysRevB.50.17953.

    Article  CAS  Google Scholar 

  47. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865. https://doi.org/10.1103/PhysRevLett.77.3865.

    Article  CAS  PubMed  Google Scholar 

  48. Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys. 2010;132(15):154104. https://doi.org/10.1063/1.3382344.

    Article  CAS  PubMed  Google Scholar 

  49. Maintz S, Deringer VL, Tchougréeff AL, Dronskowski R. LOBSTER: a tool to extract chemical bonding from plane-wave based DFT. J Comput Chem. 2016;37(11):1030. https://doi.org/10.1002/jcc.24300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys. 2007;126(1):014101. https://doi.org/10.1063/1.2408420.

    Article  CAS  PubMed  Google Scholar 

  51. Tang W, Sanville E, Henkelman G. A grid-based Bader analysis algorithm without lattice bias. J Phys Condens Matter. 2009;21(8):084204. https://doi.org/10.1088/0953-8984/21/8/084204.

    Article  CAS  PubMed  Google Scholar 

  52. Yuan Y, Ma JP, Ai HQ, Kang BT, Lee JY. A simple general descriptor for rational design of graphyne-based bifunctional electrocatalysts toward hydrogen evolution and oxygen reduction reactions. J Colloid Interface Sci. 2021;592:440. https://doi.org/10.1016/j.jcis.2021.02.052.

    Article  CAS  PubMed  Google Scholar 

  53. Medford AJ, Vojvodic A, Hummelshøj JS, Voss J, Abild-Pedersen F, Studt F, Bligaard T, Nilsson A, Nørskov JK. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J Catal. 2015;328:36. https://doi.org/10.1016/j.jcat.2014.12.033.

    Article  CAS  Google Scholar 

  54. Zhou YN, Sheng L, Luo QQ, Zhang WH, Yang JL. Improving the activity of electrocatalysts toward the hydrogen evolution reaction, the oxygen evolution reaction, and the oxygen reduction reaction via modification of metal and ligand of conductive two-dimensional metal–organic frameworks. J Phys Chem Lett. 2021;12(48):11652. https://doi.org/10.1021/acs.jpclett.1c03452.

    Article  CAS  PubMed  Google Scholar 

  55. Kim DY, Ha M, Kim KS. A universal screening strategy for the accelerated design of superior oxygen evolution/reduction electrocatalysts. J Mater Chem A. 2021;9(6):3511. https://doi.org/10.1039/D0TA02425B.

    Article  CAS  Google Scholar 

  56. Dashti NL, Mohajeri A. Progress of oxygen and hydrogen evolution reactions in parallel with chlorine evolution on manganese single-atom catalysts based on perfect and defective porphyrin, corrole, and phthalocyanine. Int J Hydrogen Energy. 2023;48(8):2973. https://doi.org/10.1016/j.ijhydene.2022.10.111.

    Article  CAS  Google Scholar 

  57. Li J, Chen SG, Yang N, Deng MM, Ibraheem S, Deng JH, Li J, Li L, Wei ZD. Ultrahigh-loading zinc single-atom catalyst for highly efficient oxygen reduction in both acidic and alkaline media. Angew Chem Int Ed. 2019;58(21):7035. https://doi.org/10.1002/anie.201902109.

    Article  CAS  Google Scholar 

  58. Jing Q, Mei ZY, Sheng XL, Zou XX, Yang YX, Zhang CH, Wang LL, Sun YJ, Duan LY, Guo H. 3d orbital electron engineering in oxygen electrocatalyst for zinc-air batteries. Chem Eng J. 2023;462:142321. https://doi.org/10.1016/j.cej.2023.142321.

    Article  CAS  Google Scholar 

  59. Sheng XL, Mei ZY, Jing Q, Zou XX, Wang LL, Xu QJ, Yang L, Guo H. Cross-linked double-active centers for efficient pH-universal oxygen reduction catalysis. ACS Sustain Chem Eng. 2023;11(18):7263. https://doi.org/10.1021/acssuschemeng.3c01353.

    Article  CAS  Google Scholar 

  60. Mei ZY, Cai S, Zhao GF, Jing Q, Sheng XL, Jiang JW, Guo H. Understanding electronic configurarions and coordination environment for enhanced ORR process and improved Zn-air battery performance. Energy Storage Mater. 2022;50:12. https://doi.org/10.1016/j.ensm.2022.05.006.

    Article  Google Scholar 

  61. Chen X, Zhu HY, Zhu JQ, Zhang H. Indium-based bimetallic clusters anchored onto silicon-doped graphene as efficient multifunctional electrocatalysts for ORR, OER, and HER. Chem Eng J. 2023;451:138998. https://doi.org/10.1016/j.cej.2022.138998.

    Article  CAS  Google Scholar 

  62. Zhao ZQ, Hao JB, Jia BN, Zhang XH, Wu G, Zhang CL, Li L, Gao SL, Ma YR, Li YZ, Lu PF. Transition metal embedded in nonmetal-doped T-carbon [110]: a superior synergistic trifunctional electrocatalyst for HER, OER and ORR. J Energy Chem. 2023;83:79. https://doi.org/10.1016/j.jechem.2023.04.003.

    Article  CAS  Google Scholar 

  63. Chen DC, Chen ZW, Lu ZL, Zhang XX, Tang J, Singh CV. Transition metal–N4 embedded black phosphorus carbide as a high-performance bifunctional electrocatalyst for ORR/OER. Nanoscale. 2020;12(36):18721. https://doi.org/10.1039/D0NR03339A.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 21905175).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 32130 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, CY., Zhang, XH., Zhang, Q. et al. Single transition-metal atoms anchored on a novel Dirac-dispersive π-π conjugated holey graphitic carbon nitride substrate: computational screening toward efficient bifunctional OER/ORR electrocatalysts. Rare Met. (2024). https://doi.org/10.1007/s12598-024-02652-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12598-024-02652-6

Keywords

Navigation