Skip to main content
Log in

A visible-light-assisted Pd/TiO2 gas sensor with carbon nanotubes electrodes for trace formaldehyde detection

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Owing to the ppb-level detection standard toward the toxic and harmful gas, the detection of trace gases has become an important subject in the field of indoor environment management. However, the traditional resistive gas sensors hardly meet the requirement due to the weak signal generated by trace gas molecules that are difficult to capture. Herein, a visible-light-assisted Pd/TiO2 gas sensor is proposed to endow the effective detection of trace formaldehyde (HCHO) gas without heating temperature. Benefiting from the enhanced photocatalytic properties of TiO2 by Pd decoration, the visible-light-assisted Pd/TiO2 gas sensor can detect the HCHO gas as low as 80 × 10–9 at room temperature. The successful preparation of nanoscale TiO2 sensing layer is facilitated by the ultra-thin carbon nanotube interdigital electrode in the gas sensor, which avoids the discontinuity of the sensing layer caused by the excessive thickness of the traditional metal electrode. In addition, the whole preparation process of the Pd/TiO2 gas sensor with carbon nanotube electrodes is compatible with mainstream CMOS fabrication technology, which is expected to realize the batch fabrication and micro-integrated application of gas sensors. It is expected that our work can provide a new strategy for the batch preparation of high-performance trace HCHO gas sensors and their future applications in portable electronic devices such as smartphones.

Graphical abstract

摘要

由于有毒有害气体的10−9级检测标准,痕量气体的检测已成为环境监测领域的重要课题。然而,传统的电阻式气体传感器由于痕量气体分子产生的微弱信号难以捕获而难以满足要求。本文提出了一种可见光辅助型Pd/TiO2气体传感器,可以在无外加工作温度的情况下有效检测痕量甲醛(HCHO)气体。利用Pd修饰增强了TiO2的光催化性能,该可见光辅助型Pd/TiO2气体气体传感器可以在室温下检测低至80 × 10−9的HCHO气体。气体传感器中超薄的碳纳米管叉指电极有利于纳米级TiO2传感层的成功制备,避免了传统金属电极厚度过大造成的传感层的不连续。此外,基于碳纳米管电极的Pd/TiO2气体传感器的整个制备过程与主流CMOS制造技术兼容,有望实现气体传感器的批量制造和微型集成化应用。期望我们的工作可以为高性能痕量HCHO气体传感器的批量制备及其在智能手机等便携式电子设备中的应用提供新的策略。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Programme M. IARC classifies formaldehyde as carcinogenic. Oncol Times. 2004;26(13):72. https://doi.org/10.1097/01.COT.0000292246.11180.99.

    Article  Google Scholar 

  2. Zhang LX, Zhao MM, Yin YY, Xing Y, Bie LJ. Rich defects and nanograins boosted formaldehyde sensing performance of mesoporous polycrystalline ZnO nanosheets. Rare Met. 2022;41(7):2292. https://doi.org/10.1007/s12598-021-01946-3.

  3. Zhang Y, Yang YY, He XQ, Yang PY, Zong TY, Sun P, Sun RC, Tao Y, Jiang ZR. The cellular function and molecular mechanism of formaldehyde in cardiovascular disease and heart development. J Cell Mol Med. 2021;25(12):5358. https://doi.org/10.1111/jcmm.16602.

    Article  CAS  Google Scholar 

  4. World Health Organization. Regional Office for Europe. WHO guidelines for indoor air quality: selected pollutants. World Health Organization. Regional Office for Europe. https://apps.who.int/iris/handle/10665/260127.

  5. Chen ZL, Wang D, Wang XY. Enhanced formaldehyde sensitivity of two-dimensional mesoporous SnO2 by nitrogen-doped graphene quantum dots. Rare Met. 2021;40(6):1561. https://doi.org/10.1007/s12598-020-01636-6.

  6. Rim YS, Bae SH, Chen HJ, Marco N, Yang Y. Recent progress in materials and devices toward printable and flexible sensors. Adv Mater. 2016;28(22):4415. https://doi.org/10.1002/adma.201505118.

    Article  CAS  Google Scholar 

  7. Yuan ZY, Yang F, Zhu HM, Meng FL, Ibrahim M. High-response n-butanol gas sensor based on ZnO/In2O3 heterostructure. Rare Met. 2023;42(1):198. https://doi.org/10.1007/s12598-022-02162-3.

    Article  CAS  Google Scholar 

  8. Wu X, Luan QT, Wang J, Lin HF, Ding WH, Wu GL, Xie WF. Recent advances in ethanol gas sensors based on metal oxide semiconductor heterojunctions. Rare Met. 2022;41(6):1818. https://doi.org/10.1007/s12598-021-01937-4.

    Article  CAS  Google Scholar 

  9. Liu JJ, Zhang LY, Fan JJ, Yu JG. Semiconductor gas sensor for triethylamine detection. Small. 2022;18(11):2104984. https://doi.org/10.1002/smll.202104984.

    Article  CAS  Google Scholar 

  10. Liu JB, Hu JY, Liu C, Tan YM, Peng X, Zhang Y. Mechanically exfoliated MoS2 nanosheets decorated with SnS2 nanoparticles for high-stability gas sensors at room temperature. Rare Met. 2021;40(6):1536. https://doi.org/10.1007/s12598-020-01565-4.

  11. Lu GC, Liu XH, Zheng W, Xie JY, Li ZS, Lou CM, Lei GL, Zhang J. UV-activated single-layer WSe2 for highly sensitive NO2 detection. Rare Met. 2022;41(5):1520. https://doi.org/10.1007/s12598-021-01899-7.

    Article  CAS  Google Scholar 

  12. Wu T, Wang Z, Tian M, Miao J, Zhang H, Sun J. UV excitation NO2 gas sensor sensitized by ZnO quantum dots at room temperature. Sens Actuators B Chem. 2018;259:526. https://doi.org/10.1016/j.snb.2017.12.101.

    Article  CAS  Google Scholar 

  13. Zhang C, Boudiba A, Marcob PD, Snyders R, Olivier MG, Debliquy M. Room temperature responses of visible-light illuminated WO3 sensors to NO2 in sub-ppm range. Sens Actuators B Chem. 2013;181:395. https://doi.org/10.1016/j.snb.2013.01.082.

    Article  CAS  Google Scholar 

  14. Rumyantseva MN, Vasiliev RB, Filatova DG, Drozdov KA, Krylov IV, Gaskov AM. Visible light activated room temperature gas sensors based on nanocrystalline ZnO sensitized with CdSe quantum dots. Sens Actuators B Chem. 2014;205:305. https://doi.org/10.1016/j.snb.2014.08.091.

    Article  CAS  Google Scholar 

  15. Zhang J, Xu Q, Feng Z, Li M, Li C. Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angew Chem Int Ed. 2008;120(9):1790. https://doi.org/10.1002/ange.200704788.

    Article  Google Scholar 

  16. Harathi N, Bollu M, Pasupuleti KS, Tauanov Z, Peta KR, Kim MD, Reddeppa M, Sarkar A, Rao VN. PrGO decorated TiO2 nanoplates hybrid nanocomposite for augmented NO2 gas detection with faster gas kinetics under UV light irradiation. Sens Actuators B Chem. 2022;358:131503. https://doi.org/10.1016/j.snb.2022.131503.

    Article  CAS  Google Scholar 

  17. Liu L, Li X, Dutta PK, Wang J. Room temperature impedance spectroscopy-based sensing of formaldehyde with porous TiO2 under UV illumination. Sens Actuators B Chem. 2013;185:1. https://doi.org/10.1016/j.snb.2013.04.090.

    Article  CAS  Google Scholar 

  18. Seekaew Y, Wisitsoraat A, Phokharatkul D, Wongchoosuk C. Room temperature toluene gas sensor based on TiO2 nanoparticles decorated 3D graphene-carbon nanotube nanostructures. Sens Actuators B Chem. 2019;279:69. https://doi.org/10.1016/j.snb.2018.09.095.

    Article  CAS  Google Scholar 

  19. Sabri YM, Kandjani AE, Rashid SSAAH, Harrison CJ, Ippolito SJ, Bhargava SK. Soot template TiO2 fractals as a photoactive gas sensor for acetone detection. Sens Actuator B Chem. 2018;275:215. https://doi.org/10.1016/j.snb.2018.08.059.

    Article  CAS  Google Scholar 

  20. Pour MN, Nikfarjam A, Taheri A, Sadredini AR. Gas sensor array assisted with UV illumination for discriminating several analytes at room temperature. Micro Nano Lett. 2019;14(10):1064. https://doi.org/10.1049/mnl.2019.0049.

    Article  CAS  Google Scholar 

  21. Kumar R, Liu X, Zhang J, Kumar M. Room-temperature gas sensors under photoactivation: from metal oxides to 2D Materials. Nano Micro Lett. 2020;12:164. https://doi.org/10.1007/s40820-020-00503-4.

    Article  CAS  Google Scholar 

  22. Sun Y, Hu J, Zhang Y. Visible light assisted trace gaseous NO2 sensor with anti-humidity ability via LSPR enhancement effect. Sens Actuators B Chem. 2022;367:132032. https://doi.org/10.1016/j.snb.2022.132032.

    Article  CAS  Google Scholar 

  23. Kim JH, Mirzaei A, Kim HW, Kim SS. Realization of Au-decorated WS2 nanosheets as low power-consumption and selective gas sensors. Sens Actuators B Chem. 2019;296:126659. https://doi.org/10.1016/j.snb.2019.126659.

    Article  CAS  Google Scholar 

  24. Zhang Q, Xie G, Xu M, Su Y, Tai H, Du H, Jiang Y. Visible light-assisted room temperature gas sensing with ZnO-Ag heterostructure nanoparticles. Sens Actuators B Chem. 2018;259:269. https://doi.org/10.1016/j.snb.2017.12.052.

    Article  CAS  Google Scholar 

  25. Bléger D, Hecht S. Visible-light-activated molecular switches. Angew Chem Int Ed. 2015;54(39):11338. https://doi.org/10.1002/anie.201500628.

    Article  CAS  Google Scholar 

  26. Zhang H, Xiao J, Chen J, Zhang L, Zhang Y, Pei XL. Pd-modified SmFeO3 with hollow tubular structure under light shows extremely high acetone gas sensitivity. Rare Metal. 2023;42:545–57. https://doi.org/10.1007/s12598-022-02192-x.

    Article  CAS  Google Scholar 

  27. Zhu Z, Wu RJ. The degradation of formaldehyde using a Pt@TiO2 nanoparticles in presence of visible light irradiation at room temperature. J Taiwan Inst Chem E. 2015;50:276. https://doi.org/10.1016/j.jtice.2014.12.022.

    Article  CAS  Google Scholar 

  28. Chan C, Chang C, Hsu W, Wang S, Lin J. Photocatalytic activities of Pd-loaded mesoporous TiO2 thin films. Chem Eng J. 2009;152(2–3):492. https://doi.org/10.1016/j.cej.2009.05.012.

    Article  CAS  Google Scholar 

  29. Cai ZX, Chen YZ, Meteku B.E., Zheng QW, Li FM, Zhang MS, Zeng JB, Chen X. Cu2+-assisted synthesis of Au@AgI core/shell nanorods via in situ oxidation of iodide: a strategy for colorimetric iodide sensing. J Anal Test. 2022;6:374. https://doi.org/10.1007/s41664-022-00221-3.

  30. Tanuˇsevski A, Poelman D. Optical and photoconductive properties of SnS thin films prepared by electron beam evaporation. Sol Energy Mater Sol Cells. 2003;80(3):297. https://doi.org/10.1016/j.solmat.2003.06.002.

    Article  CAS  Google Scholar 

  31. Shamala KS, Murthy LCS, Narasimha RK. Studies on tin oxide films prepared by electron beam evaporation and spray pyrolysis methods. Bull Mater Sci. 2004;27:295. https://doi.org/10.1007/bf02708520.

    Article  CAS  Google Scholar 

  32. Zhou S, Xiao MM, Liu FF, He JP, Lin YX, Zhang ZY. Sub-10 parts per billion detection of hydrogen with floating gate transistors built on semiconducting carbon nanotube film. Carbon. 2021;180:41. https://doi.org/10.1016/j.carbon.2021.04.076.

    Article  CAS  Google Scholar 

  33. Liang Y, Xiao MM, Wu D, Lin YX, Liu LJ, He JP, Zhang GJ, Peng LM, Zhang ZY. Wafer-scale uniform carbon nanotube transistors for ultrasensitive and label-free detection of disease biomarkers. ACS Nano. 2020;14(7):8866. https://doi.org/10.1021/acsnano.0c03523.

    Article  CAS  Google Scholar 

  34. Chinh ND, Kim C, Kim D. UV-light-activated H2S gas sensing by a TiO2 nanoparticulate thin film at room temperature. J Alloy Compd. 2019;778:247. https://doi.org/10.1016/j.jallcom.2018.11.153.

    Article  CAS  Google Scholar 

  35. Yoon HJ, Jun DH, Yang JH, Zhou Z, Yang SS, Cheng MMC. Carbon dioxide gas sensor using a graphene sheet. Sens Actuators B Chem. 2011;157(1):310. https://doi.org/10.1016/j.snb.2011.03.035.

    Article  CAS  Google Scholar 

  36. Erdem B, Hunsicker RA, Simmons GW, Sudol ED, Dimonie VL, El-Aasser MS. XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation. Langmuir. 2001;17(9):2664. https://doi.org/10.1021/la0015213.

    Article  CAS  Google Scholar 

  37. Wang DH, Pan JN, Li HH, Liu JJ, Wang YB, Kang LT, Yao JN. A pure organic heterostructure of μ-oxo dimeric iron (III) porphyrin and graphitic-C3N4 for solar H2 roduction from water. J Mater Chem A. 2016;4:290. https://doi.org/10.1039/C5TA07278F.

    Article  CAS  Google Scholar 

  38. Jin BB, Ye X, Zhong H, Jin FM. Light-driven hydrogenation of bicarbonate into formate over nano-Pd/TiO2. ACS sustain Chem Eng. 2020;8(17):6798. https://doi.org/10.1021/acssuschemeng.0c01616.

    Article  CAS  Google Scholar 

  39. Jiang TT, Jia CC, Zhang LC, He SR, Sang YH, Li HD, Li YQ, Xu XH, Liu H. Gold and gold–palladium alloy nanoparticles on heterostructured TiO2 nanobelts as plasmonic photocatalysts for benzyl alcohol oxidation. Nanoscale. 2015;7(1):209. https://doi.org/10.1039/C4NR05905K.

    Article  CAS  Google Scholar 

  40. Xiang Q, Meng G, Zhang Y, Xu J, Xu P, Pan Q, Yu W. Ag nanoparticle embedded-ZnO nanorods synthesized via a photochemical method and its gas-sensing properties. Sens Actuators B Chem. 2010;143(2):635. https://doi.org/10.1016/j.snb.2009.10.007.

    Article  CAS  Google Scholar 

  41. Li Z, Haidry AA, Wang T, Yao ZJ. Low-cost fabrication of highly sensitive room temperature hydrogen sensor based on ordered mesoporous Co-doped TiO2 structure. Appl Phys Lett. 2017;111:032104. https://doi.org/10.1063/1.4994155.

    Article  CAS  Google Scholar 

  42. Ebtsam KA, Ylias MS, Ahmad EK, Dilek K, Syed SAAHR, Samuel JI, Suresh KB. Low-temperature hydrogen sensor: enhanced performance enabled through photoactive Pd-decorated TiO2 colloidal crystals. ACS sensors. 2020;5(12):3902. https://doi.org/10.1021/acssensors.0c01387.

    Article  CAS  Google Scholar 

  43. Pham T, Li G, Bekyarova E, Itkis ME, Mulchandani A. MoS-based optoelectronic gas sensor with sub-parts-per-billion limit of no gas detection. ACS Nano. 2019;13(3):3196. https://doi.org/10.1021/acsnano.8b08778.

    Article  CAS  Google Scholar 

  44. Kumar R, Goel N, Kumar M. UV-activated MoS2 based fast and reversible NO2 sensor at room temperature. ACS Sens. 2017;2(11):1744. https://doi.org/10.1021/acssensors.7b00731.

    Article  CAS  Google Scholar 

  45. Lee S, Kim W, Yong K. Overcoming the water vulnerability of electronic devices: a highly water-resistant ZnO nanodevice with multifunctionality. Adv Mater. 2011;23(38):4398. https://doi.org/10.1002/adma.201101580.

    Article  CAS  Google Scholar 

  46. Gao Z, Song G, Zhang X, Li Q, Yang S, Wang T, Li Y, Zhang L, Guo L, Fu Y. A facile PDMS coating approach to room-temperature gas sensors with high humidity resistance and long-term stability. Sens Actuator B Chem. 2020;325:128810. https://doi.org/10.1016/j.snb.2020.128810.

    Article  CAS  Google Scholar 

  47. Zhao ZY, Knight M, Kumar S, Eisenbraun ET, Carpenter MA. Humidity effects on Pd/Au-based all-optical hydrogen sensors. Sens Actuators B Chem. 2008;129(2):726. https://doi.org/10.1016/j.snb.2007.09.032.

    Article  CAS  Google Scholar 

  48. Song YG, Shim YS, Suh JM, Noh MS, Kim GS, Choi KS, Jeong B, Kim S, Jang HW, Ju BK, Kang CY. Ionic-Activated chemiresistive gas sensors for room-temperature operation. Small. 2019;15(40):1902065. https://doi.org/10.1002/smll.201902065.

    Article  CAS  Google Scholar 

  49. Chen Y, Gao SK, Dong YY, Ma X, Li JR, Guo MM, Zhang JC. Fast determination of the rubber content in taraxacum kok-saghyz fresh biomass using portable near-infrared spectroscopy and pyrolysis–gas chromatography. J Anal Test. 2022;6:393. https://doi.org/10.1007/s41664-022-00217-z.

  50. Ma N, Suematsu K, Yuasa M, Kida T, Shimanoe K. Effect of water vapor on Pd-loaded SnO2 nanoparticles gas sensor. ACS Appl Mater Interfaces. 2015;7(10):5863. https://doi.org/10.1021/am509082w.

    Article  CAS  Google Scholar 

  51. Murata Y, Starodub E, Kappes BB, Ciobanu CV, Bartelt NC, Mccarty KF, Kodambaka S. Orientation-dependent work function of graphene on Pd (111). Appl Phys Lett. 2010;97:143114. https://doi.org/10.1063/1.3495784.

    Article  CAS  Google Scholar 

  52. Zhou W, Guan Y, Wang D, Zhang X, Liu D, Jiang H, Wang J, Liu X, Liu H, Chen S. PdO/TiO2 and Pd/TiO2 heterostructured nanobelts with enhanced photocatalytic activity. Chem Asian J. 2014;9(6):1648. https://doi.org/10.1002/asia.201301638.

    Article  CAS  Google Scholar 

  53. Torres J, Royer S, Bellat J, Giraudon J, Lamonier J. Formaldehyde: Catalytic oxidation as a promising soft way of elimination. Chem Sus Chem. 2013;6(4):578. https://doi.org/10.1002/cssc.201200809.

    Article  CAS  Google Scholar 

  54. Chen Y, Gao J, Huang Z, Zhou M, Chen J, Li C, Ma Z, Chen J, Tang X. Sodium rivals’ silver as single-atom active centers for catalyzing abatement of formaldehyde. Environ Sci Technol. 2017;51(12):7084. https://doi.org/10.1021/acs.est.7b00499.

    Article  CAS  Google Scholar 

  55. Zampetti E, Macagnano A, Bearzotti A. Gas sensor based on photoconductive electrospun titania nanofibres operating at room temperature. J Nanopart Res. 2013;15:1566. https://doi.org/10.1007/s11051-013-1566-9.

    Article  CAS  Google Scholar 

  56. Li X, Li X, Wang J, Lin S. Highly sensitive and selective room temperature formaldehyde sensors using hollow TiO2 microspheres. Sens Actuators B Chem. 2015;219:158. https://doi.org/10.1016/j.snb.2015.05.031.

    Article  CAS  Google Scholar 

  57. Luo Y, Zhang C, Zheng B, Geng X, Debliquy M. Hydrogen sensors based on noble metal doped metal-oxide semiconductor: a review. Int J Hydrog Energy. 2017;42(31):20386. https://doi.org/10.1016/j.ijhydene.2017.06.066.

    Article  CAS  Google Scholar 

  58. Tian A, Shi XG, Tan HC, Li BX, Ma JW, Yang H. Preparation and photocatalytic properties of Ni doped TiO2 nanotube. Chin J Rare Metals. 2021;45(1):41. https://doi.org/10.13373/j.cnki.cjrm.xy19060015.

    Article  CAS  Google Scholar 

  59. Hu JY, Liu X, Zhang JW, Gu X, Zhang Y. Plasmon-activated NO2 sensor based on Au@MoS2 core-shell nanoparticles with heightened sensitivity and full recoverability. Sens Actuators B Chem. 2023;382:133505. https://doi.org/10.1016/j.snb.2023.133505.

    Article  CAS  Google Scholar 

  60. Peng X, Liu JB, Tan YM, Mo R, Zhang Y. A CuO thin film type sensor via inkjet printing technology with high reproducibility for ppb-level formaldehyde detection. Sens Actuator B Chem. 2022;362:131775. https://doi.org/10.1016/j.snb.2022.131775.

    Article  CAS  Google Scholar 

  61. Wang J, Deng HY, Li X, Yang C, Xia Y. Visible-light photocatalysis enhanced room-temperature formaldehyde gas sensing by MoS2/rGO hybrids. Sens Actuator B-Chem. 2020;304:127317. https://doi.org/10.1016/j.snb.2019.127317.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 62071410 and 62101477), Hunan Provincial Natural Science Foundation (No. 2021JJ40542) and the Postgraduate Scientific Research Innovation Project of Hunan Province (No. CX20210627).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Liu or Yong Zhang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1978 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Zou, QQ., Liu, B. et al. A visible-light-assisted Pd/TiO2 gas sensor with carbon nanotubes electrodes for trace formaldehyde detection. Rare Met. 43, 257–266 (2024). https://doi.org/10.1007/s12598-023-02509-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02509-4

Keywords

Navigation