Skip to main content
Log in

High-response n-butanol gas sensor based on ZnO/In2O3 heterostructure

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this study, ZnO/In2O3-heterostructured nanosheets were prepared using a one-step hydrothermal method. The effects of ZnO content on the gas-sensing performance were discussed, with ZnO/In2O3-2 exhibiting the highest performance among the prepared sensors. The response of ZnO/In2O3-2 to n-butanol was 302 at 26 °C, which was 11.93 times higher than that of pure In2O3. Among the eight tested gases, ZnO/In2O3-2 displayed the highest response to n-butanol. Moreover, the lower detection limit of the ZnO/In2O3 nanosheets was reduced from 10 × 10−6 to 0.1 × 10−6 (for pure In2O3 nanosheets) toward n-butanol. This is because the doping of Zn2+ increases the number of oxygen vacancies on the sensor surface and allows the formation of an n–n heterostructure between ZnO and In2O3, which increases the initial resistance of the sensor.

Graphical abstract

摘要

在这项研究中, 采用一步水热法制备了ZnO/In2O3异质结构纳米片。讨论了氧化锌含量对气体传感性能的影响, 其中ZnO/In2O3-2在所制备的传感器中表现出最高的性能。ZnO/In2O3-2在262 °C的条件下, 对正丁醇的响应是302, 是纯In2O3的11.93倍。在8种测试气体中, ZnO/In2O3-2对正丁醇具有最高响应。此外, ZnO/In2O3纳米片对正丁醇的检测下限从10 × 10−6降低到0.1 × 10−6 (与纯In2O3纳米片相比) 。这是因为Zn2+离子掺入增加了传感器表面的氧空位数量, 并使ZnO和In2O3之间形成n-n异质结构, 从而增加了传感器的初始电阻。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liu T, Wang YQ, Liu XG, Fu HT, An XZ, Yu JK. Enhanced n-butanol sensitivity and selectivity of Sb-doped ZnO-Co3O4 nanoparticles synthesized by solvothermal method. Ceram Int. 2021;47(24):34979. https://doi.org/10.1016/j.ceramint.2021.09.039.

    Article  CAS  Google Scholar 

  2. Zhao RJ, Li KJ, Wang ZZ, Xing XX, Wang YD. Gas-sensing performances of Cd-doped ZnO nanoparticles synthesized by a surfactant-mediated method for n-butanol gas. J Phys Chem Solids. 2018;112:43. https://doi.org/10.1016/j.jpcs.2017.08.039.

    Article  CAS  Google Scholar 

  3. Malik R, Tomer VK, Chaudhary V, Dahiya MS, Nehra SP, Rana PS, Duhan S. Ordered mesoporous In-(TiO2/WO3) nanohybrid: an ultrasensitive n-butanol sensor. Sensors Actuators B-Chem. 2017;239:364. https://doi.org/10.1016/j.snb.2016.08.022.

    Article  CAS  Google Scholar 

  4. Liu FJ, Huang GX, Wang XZ, Xie X, Xu GG, Lu GX, He XM, Tian J, Cui HZ. High response and selectivity of single crystalline ZnO nanorods modified by In2O3 nanoparticles for n-butanol gas sensing. Sensors Actuators B-Chem. 2018;277:144. https://doi.org/10.1016/j.snb.2018.08.144.

    Article  CAS  Google Scholar 

  5. Xu YS, Zheng LL, Yang C, Zheng W, Liu XH, Zhang J. Chemiresistive sensors based on core-shell ZnO@TiO2 nanorods designed by atomic layer deposition for n-butanol detection. Sensors Actuators B-Chem. 2020;310:1. https://doi.org/10.1016/j.snb.2020.127846.

    Article  CAS  Google Scholar 

  6. Dadkhah M, Tulliani JM. Green synthesis of metal oxides semiconductors for gas sensing applications. Sensors. 2022;22(13):4669. https://doi.org/10.3390/s22134669.

    Article  CAS  Google Scholar 

  7. Geng WC, Cao XR, Xu SL, Yang JH, Babar N, He ZJ, Zhang QY. Synthesis of hollow spherical nickel oxide and its gas-sensing properties. Rare Met. 2021;40(6):1622. https://doi.org/10.1007/s12598-020-01639-3.

    Article  CAS  Google Scholar 

  8. Jiao MZ, Chen XY, Hu KX, Qian DY, Zhao XH, Ding EJ. Recent developments of nanomaterials-based conductive type methane sensors. Rare Met. 2021;40(6):1515. https://doi.org/10.1007/s12598-020-01679-9.

    Article  CAS  Google Scholar 

  9. Xu HY, Chen ZR, Liu CY, Ye Q, Yang XP, Wang JQ, Cao BQ. Preparation of {200} crystal faced SnO2 nanorods with extremely high gas sensitivity at lower temperature. Rare Met. 2021;40(8):2004. https://doi.org/10.1007/s12598-021-01720-5.

    Article  CAS  Google Scholar 

  10. Amiri V, Roshan H, Mirzaei A, Neri G, Ayesh AI. Nanostructures metal oxide-based acetone gas sensor: a review. Sensors. 2020;20(11):3096. https://doi.org/10.3390/s20113096.

    Article  CAS  Google Scholar 

  11. Zhang C, Li Y, Liu GF, Liao HL. Preparation of ZnO1-x by peroxide thermal decomposition and its room temperature gas sensing properties. Rare Met. 2022;41(3):871. https://doi.org/10.1007/s12598-021-01840-y.

    Article  CAS  Google Scholar 

  12. Kim S, Park S, Sun GJ, Hyun SK, Kim KK, Lee C. Enhanced acetone gas sensing performance of the multiple-networked Fe2O3-functionalized In2O3 nanowire sensor. Curr Appl Phys. 2015;15(8):947. https://doi.org/10.1016/j.cap.2015.05.005.

    Article  Google Scholar 

  13. Zhang N, Xie F, Wang JC, Zhang QY, Zhang SP, Wang L. High throughput screening of surface modificated In2O3 for VOC gas sensing array optimization. IEEE Sensors J. 2020;20(13):7318. https://doi.org/10.1109/jsen.2020.2970812.

    Article  CAS  Google Scholar 

  14. Zheng W, Lu XF, Wang W, Li ZY, Zhang HN, Wang Y, Wang ZJ, Wang C. A highly sensitive and fast-responding sensor based on electrospun In2O3 nanofibers. Sensors Actuators B-Chem. 2009;142(1):61. https://doi.org/10.1016/j.snb.2009.07.031.

    Article  CAS  Google Scholar 

  15. Devi P, Singh JP. A highly sensitive colorimetric gas sensor based on indium oxide nnnostructures for H2S detection at room temperature. IEEE Sensors J. 2021;21(17):18512. https://doi.org/10.1109/jsen.2021.3089290.

    Article  CAS  Google Scholar 

  16. Lee SK, Chang D, Yang SD, Kim SW. Synthesis of diacid-assisted indium oxide nanoparticles and its CO gas sensing activity. J Nanosci Nanotechnol. 2015;15(12):9905. https://doi.org/10.1166/jnn.2015.10867.

    Article  CAS  Google Scholar 

  17. Hu J, Sun YJ, Xue Y, Zhang M, Li PW, Lian K, Zhuiykov S, Zhang WD, Chen Y. Highly sensitive and ultra-fast gas sensor based on CeO2-loaded In2O3 hollow spheres for ppb-level hydrogen detection. Sensors Actuators B-Chem. 2018;257:124. https://doi.org/10.1016/j.snb.2017.10.139.

    Article  CAS  Google Scholar 

  18. Zhang B, Bao N, Wang T, Xu Y, Dong Y, Ni Y, Yu PP, Wei QF, Wang J, Guo LL, Xia Y. High-performance room temperature NO2 gas sensor based on visible light irradiated In2O3 nanowires. J Alloys Compnd. 2021;867:1. https://doi.org/10.1016/j.jallcom.2021.159076.

    Article  CAS  Google Scholar 

  19. Xu JQ, Chen YP, Shen JN. Ethanol sensor based on hexagonal indium oxide nanorods prepared by solvothermal methods. Mater Lett. 2008;62(8):1363. https://doi.org/10.1016/j.matlet.2007.08.054.

    Article  CAS  Google Scholar 

  20. Zhang WH, Ding SJ, Zhang QS, Yi H, Liu ZX, Shi ML, Guan RF, Yue L. Rare earth element-doped porous In2O3 nanosheets for enhanced gas-sensing performance. Rare Met. 2021;40(6):1662. https://doi.org/10.1007/s12598-020-01607-x.

    Article  CAS  Google Scholar 

  21. Song P, Han D, Zhang H, Li J, Yang Z, Wang Q. Hydrothermal synthesis of porous In2O3 nanospheres with superior ethanol sensing properties. Sensors Actuators B-Chem. 2014;196:434. https://doi.org/10.1016/j.snb.2014.01.114.

    Article  CAS  Google Scholar 

  22. Gao L, Ren F, Cheng Z, Zhang Y, Xiang Q, Xu J. Porous corundum-type In2O3 nanoflowers: controllable synthesis, enhanced ethanol-sensing properties and response mechanism. CrystEngComm. 2015;17(17):3268. https://doi.org/10.1039/c5ce00279f.

    Article  CAS  Google Scholar 

  23. Boehme I, Weimar U, Barsan N. Unraveling the surface chemistry of CO sensing with In2O3 based gas sensors. Sensors Actuators B-Chem. 2021;326:1. https://doi.org/10.1016/j.snb.2020.129004.

    Article  CAS  Google Scholar 

  24. Cao J, Zhang NR, Wang SM, Chen C, Zhang HM. Researching the crystal phase effect on gas sensing performance in In2O3 nanofibers. Sensors Actuators B-Chem. 2020;305:1. https://doi.org/10.1016/j.snb.2019.127475.

    Article  CAS  Google Scholar 

  25. Liu YS, Gao X, Li F, Lu GY, Zhang T, Barsan N. Pt-In2O3 mesoporous nanofibers with enhanced gas sensing performance towards ppb-level NO2 at room temperature. Sensors Actuators B-Chem. 2018;260:927. https://doi.org/10.1016/j.snb.2018.01.114.

    Article  CAS  Google Scholar 

  26. Wang YR, Liu B, Cai DP, Li H, Liu Y, Wang DD, Wang LL, Li QH, Wang TH. Room-temperature hydrogen sensor based on grain-boundary controlled Pt decorated In2O3 nanocubes. Sensors Actuators B-Chem. 2014;201:1. https://doi.org/10.1016/j.snb.2014.05.013.

    Article  CAS  Google Scholar 

  27. Zheng LL, Ma TT, Zhao YQ, Xu YS, Sun L, Zhang J, Liu XH. Synergy between Au and In2O3 microspheres: a superior hybrid structure for the selective and sensitive detection of triethylamine. Sensors Actuators B-Chem. 2019;290:1. https://doi.org/10.1016/j.snb.2019.03.137.

    Article  CAS  Google Scholar 

  28. Montazeri A, Jamali-Sheini F. Enhanced ethanol gas-sensing performance of Pb-doped In2O3 nanostructures prepared by sonochemical method. Sensors Actuators B-Chem. 2017;242:778. https://doi.org/10.1016/j.snb.2016.09.181.

    Article  CAS  Google Scholar 

  29. Xue YY, Wang JL, Li SN, Jiang YC, Hu MC, Zhai QG. Mesoporous Ag/In2O3 composite derived from indium organic framework as high performance formaldehyde sensor. J Solid State Chem. 2017;251:170. https://doi.org/10.1016/j.jssc.2017.04.024.

    Article  CAS  Google Scholar 

  30. Hu J, Sun YJ, Xue Y, Zhang M, Li PW, Lian K, Zhuiykov S, Zhang WD, Chen Y. Highly sensitive and ultra-fast gas sensor based on CeO2-loaded In2O3 hollow spheres for ppb-level hydrogen detection. Sensors Actuators B-Chem. 2018;257:1. https://doi.org/10.1016/j.snb.2017.10.139.

    Article  CAS  Google Scholar 

  31. Han CH, Li XW, Liu J, Dong HP, Cheng WY, Liu Y, Xin JY, Li XH, Shao CL, Liu YC. In2O3/g-C3N4/Au ternary heterojunction-integrated surface plasmonic and charge-separated effects for room-temperature ultrasensitive NO2 detection. Sensors Actuators B-Chem. 2022;371:1. https://doi.org/10.1016/j.snb.2022.132448.

    Article  CAS  Google Scholar 

  32. Feng GQ, Che YH, Wang SH, Wang SQ, Hu J, Xiao JK, Song CW, Jiang LL. Sensitivity enhancement of In2O3/ZrO2 composite based acetone gas sensor: a promising collaborative approach of ZrO2 as the heterojunction and dopant for in-situ grown octahedron-like particles. Sensors Actuators B-Chem. 2022;367:1. https://doi.org/10.1016/j.snb.2022.132087.

    Article  CAS  Google Scholar 

  33. Li SH, Xie LL, He M, Hu XB, Luo GF, Chen C, Zhu ZG. Metal-organic frameworks-derived bamboo-like CuO/In2O3 heterostructure for high-performance H2S gas sensor with low operating temperature. Sensors Actuators B-Chem. 2020;310:1. https://doi.org/10.1016/j.snb.2020.127828.

    Article  CAS  Google Scholar 

  34. Zhang DZ, Wu D, Cao YH, Zong XQ, Yang ZM. Construction of Co3O4 nanorods/In2O3 nanocubes heterojunctions for efficient sensing of NO2 gas at low temperature. J Mater Sci Mater Electron. 2018;29(22):19558. https://doi.org/10.1007/s10854-018-0087-9.

    Article  CAS  Google Scholar 

  35. Wang N, Tao W, Gong XQ, Zhao LP, Wang TS, Zhao LJ, Liu FM, Liu XM, Sun P, Lu GY. Highly sensitive and selective NO2 gas sensor fabricated from Cu2O-CuO microflowers. Sensors Actuators B-Chem. 2022;362:1. https://doi.org/10.1016/j.snb.2022.131803.

    Article  CAS  Google Scholar 

  36. Zhang DZ, Yang ZM, Li P, Zhou XY. Ozone gas sensing properties of metal-organic frameworks-derived In2O3 hollow microtubes decorated with ZnO nanoparticles. Sensors Actuators B-Chem. 2019;301:1. https://doi.org/10.1016/j.snb.2019.127081.

    Article  CAS  Google Scholar 

  37. Zhao SK, Shen YB, Zhou PF, Hao FL, Xu XY, Gao SL, Wei DZ, Ao YX, Shen YS. Enhanced NO2 sensing performance of ZnO nanowires functionalized with ultra-fine In2O3 nanoparticles. Sensors Actuators B-Chem. 2020;308:1. https://doi.org/10.1016/j.snb.2020.127729.

    Article  CAS  Google Scholar 

  38. Mu JB, Chen B, Zhang MY, Guo ZC, Zhang P, Zhang ZY, Sun YY, Shao CL, Liu YC. Enhancement of the visible-light photocatalytic activity of In2O3-TiO2 nanofiber heteroarchitectures. Acs Appl Mater Interfaces. 2012;4(1):424. https://doi.org/10.1021/am201499r.

    Article  CAS  Google Scholar 

  39. Guo LL, Chen F, Xie N, Kou XY, Wang C, Sun YF, Liu FM, Liang XS, Gao Y, Yan X, Zhang T, Lu GY. Ultra-sensitive sensing platform based on Pt-ZnO-In2O3 nanofibers for detection of acetone. Sensors Actuators B-Chem. 2018;272:185. https://doi.org/10.1016/j.snb.2018.05.161.

    Article  CAS  Google Scholar 

  40. Wang XZ, Liu FJ, Chen XY, Song XJ, Xu GG, Han Y, Tian J, Cui HZ. In2O3 nanoparticles decorated ZnO hierarchical structures for n-butanol sensor. Acs Appl Nano Mater. 2020;3(4):3295. https://doi.org/10.1021/acsanm.0c00025.

    Article  CAS  Google Scholar 

  41. Liu Y, Yuan ZY, Zhang RZ, Ji HY, Xing CY, Meng FL. MoO3/SnO2 nanocomposite-based gas sensor for rapid detection of ammonia. IEEE Trans Instrum Meas. 2021;70:1. https://doi.org/10.1109/tim.2021.3124057.

    Article  CAS  Google Scholar 

  42. Luo N, Wang C, Zhang D, Guo MM, Wang XH, Cheng ZX, Xu JQ. Ultralow detection limit MEMS hydrogen sensor based on SnO2 with oxygen vacancies. Sensors Actuators B-Chem. 2022;354:1. https://doi.org/10.1016/j.snb.2021.130982.

    Article  CAS  Google Scholar 

  43. Sun YJ, Zhao ZT, Zhou R, Li PW, Zhang WD, Suematsu K, Hu J. Synthesis of In2O3 nanocubes, nanocube clusters, and nanocubes-embedded Au nanoparticles for conductometric CO sensors. Sensors Actuators B-Chem. 2021;345:1. https://doi.org/10.1016/j.snb.2021.130433.

    Article  CAS  Google Scholar 

  44. Young SJ, Lai LT. Investigation of a highly sensitive Au nanoparticle-modified ZnO nanorod humidity sensor. IEEE Trans Electron Dev. 2021;68(2):775. https://doi.org/10.1109/ted.2020.3044023.

    Article  CAS  Google Scholar 

  45. Wang TS, Yu Q, Zhang SF, Kou XY, Sun P, Lu GY. Rational design of 3D inverse opal heterogeneous composite microspheres as excellent visible-light-induced NO2 sensors at room temperature. Nanoscale. 2018;10(10):4841. https://doi.org/10.1039/c7nr08366a.

    Article  CAS  Google Scholar 

  46. Sun M, Yu H, Dong XT, Xia L, Yang Y. Sedum lineare flower-like ordered mesoporous In2O3/ZnO gas sensing materials with high sensitive response to H2S at room temperature prepared by self-assembled of 2D nanosheets. J Alloys Compnd. 2020;844:1. https://doi.org/10.1016/j.jallcom.2020.156170.

    Article  CAS  Google Scholar 

  47. Guo WW, Shuai YT, Liu XC, Zhang J, Wang J, Mahmoud KH, El-bahy ZM, Mubarak NM. A n-butanol gas sensor with enhanced gas sensing performance based on Co-doped BiVO4 polyhedrons. Sensors Actuators B-Chem. 2021;354:1. https://doi.org/10.1016/j.snb.2021.131221.

    Article  CAS  Google Scholar 

  48. Yang BX, Liu JY, Qin H, Liu Q, Jing XY, Zhang HQ, Li RM, Huang GQ, Wang J. PtO2-nanoparticles functionalized CuO polyhedrons for n-butanol gas sensor application. Ceram Int. 2018;44(9):10426. https://doi.org/10.1016/j.ceramint.2018.03.059.

    Article  CAS  Google Scholar 

  49. Luo J, Fu P, Qu Y, Lin ZD, Zeng W. The n-butanol gas-sensing properties of monoclinic scheelite BiVO4 nanoplates. Phys E-Low-Dimens Syst Nanostruct. 2018;103:71. https://doi.org/10.1016/j.physe.2018.05.030.

    Article  CAS  Google Scholar 

  50. Zou T, Zhao R, Wang ZD, Zhao RJ, Wang ZZ, Yang Y, Xing XX, Wang YD. Sensitive and selective n-butanol gas detection based on ZnO nanocrystalline synthesized by a low-temperature solvothermal method. Phys E-Low-Dimens Syst Nanostruct. 2018;103:143. https://doi.org/10.1016/j.physe.2018.06.002.

    Article  CAS  Google Scholar 

  51. Li T, Lin ZD, Fu P, Wang SG, Chen Z, Zhang XW, Liu LM. A two-step method synthesis and gas sensing properties of CoSnO3 nanoparticles. ChemistrySelect. 2019;4(25):7591. https://doi.org/10.1002/slct.201901631.

    Article  CAS  Google Scholar 

  52. Poloju M, Jayababu N, Rao EV, Rao RG, Reddy MVR. Development of CdO/ZnO nanocomposites for the rapid detection and discrimination of n-butanol. Surf Interfaces. 2020;20:1. https://doi.org/10.1016/j.surfin.2020.100586.

    Article  CAS  Google Scholar 

  53. Ma Q, Li H, Guo J, Chu SS, Zhang Q, Lin ZQ. Available surface electronic transmission of porous SnO2/NiO hollow nanofibers for the enhanced gas-sensing performance toward n-butanol. Mater Sci Semicond Process. 2021;128:1. https://doi.org/10.1016/j.mssp.2021.105762.

    Article  CAS  Google Scholar 

  54. Han BQ, Liu X, Xing XX, Chen N, Xiao XC, Liu SY, Wang YD. A high response butanol gas sensor based on ZnO hollow spheres. Sensors Actuators B-Chem. 2016;237:423. https://doi.org/10.1016/j.snb.2016.06.117.

    Article  CAS  Google Scholar 

  55. Chu SS, Yang C, Su XT. Synthesis of NiO hollow nanospheres via Kirkendall effect and their enhanced gas sensing performance. Appl Surf Sci. 2019;492:82. https://doi.org/10.1016/j.apsusc.2019.06.226.

    Article  CAS  Google Scholar 

  56. Guo LL, Zhang B, Yang XL, Zhang SS, Wang Y, Wang GD, Zhang ZY. Sensing platform of PdO-ZnO-In2O3 nanofibers using MOF templated catalysts for triethylamine detection. Sensors Actuators B-Chem. 2021;343:1. https://doi.org/10.1016/j.snb.2021.130126.

    Article  CAS  Google Scholar 

  57. Wang DY, Zhang DZ, Yang Y, Mi Q, Zhang JH, Lu LD. Multifunctional latex/polytetrafluoroethylene-based triboelectric nanogenerator for self-powered organ-like MXene/metal-organic framework-derived CuO nanohybrid ammonia sensor. ACS Nano. 2021;15(2):2911. https://doi.org/10.1021/acsnano.0c09015.

    Article  CAS  Google Scholar 

  58. Zhang K, Qin SW, Tang PG, Feng YJ, Li DQ. Ultra-sensitive ethanol gas sensors based on nanosheet-assembled hierarchical ZnO-In2O3 heterostructures. J Hazard Mater. 2020;391:1. https://doi.org/10.1016/j.jhazmat.2020.122191.

    Article  CAS  Google Scholar 

  59. Wang DY, Zhang DZ, Li P, Yang ZM, Mi Q, Yu LD. Electrospinning of flexible poly(vinyl alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator. Nano-Micro Lett. 2021;13(1):1. https://doi.org/10.1007/s40820-020-00580-5.

    Article  CAS  Google Scholar 

  60. Mohanapriya P, Segawa H, Watanabe K, Watanabe K, Samitsu S, Natarajan TS, Jaya NV, Ohashi N. Enhanced ethanol-gas sensing performance of Ce-doped SnO2 hollow nanofibers prepared by electrospinning. Sensors Actuators B-Chem. 2013;188:872. https://doi.org/10.1016/j.snb.2013.07.016.

    Article  CAS  Google Scholar 

  61. Gholami M, Khodadadi AA, Firooz AA, Mortazavi Y. In2O3-ZnO nanocomposites: high sensor response and selectivity to ethanol. Sensors Actuators B-Chem. 2015;212:395. https://doi.org/10.1016/j.snb.2015.02.030.

    Article  CAS  Google Scholar 

  62. Motaung DE, Mhlongo GH, Makgwane PR, Dhonge BP, Cummings FR, Swart HC, Ray SS. Ultra-high sensitive and selective H2 gas sensor manifested by interface of n-n heterostructure of CeO2-SnO2 nanoparticles. Sensors Actuators B-Chem. 2018;254:984. https://doi.org/10.1016/j.snb.2017.07.093.

    Article  CAS  Google Scholar 

  63. Zhang DZ, Yang ZM, Yu SJ, Mi Q, Pan QN. Diversiform metal oxide-based hybrid nanostructures for gas sensing with versatile prospects. Coord Chem Rev. 2020;413:1. https://doi.org/10.1016/j.ccr.2020.213272.

    Article  CAS  Google Scholar 

  64. Xue QZ, Chen HJ, Li Q, Yan KY, Besenbacher F, Dong MD. Room-temperature high-sensitivity detection of ammonia gas using the capacitance of carbon/silicon heterojunctions. Energy Environ Sci. 2010;3(3):288. https://doi.org/10.1039/b925172n.

    Article  CAS  Google Scholar 

  65. Ma LT, Fan HQ, Tian HL, Fang JW, Qian XZ. The n-ZnO/n-In2O3 heterojunction formed by a surface-modification and their potential barrier-control in methanal gas sensing. Sensors Actuators B-Chem. 2016;222:508. https://doi.org/10.1016/j.snb.2015.08.085.

    Article  CAS  Google Scholar 

  66. Wang Y, Li YW, Yu K, Zhu ZQ. Controllable synthesis and field emission enhancement of Al2O3 coated In2O3 core-shell nanostructures. J Phys D-Appl Phys. 2011;44(10):1. https://doi.org/10.1088/0022-3727/44/10/105301.

    Article  CAS  Google Scholar 

  67. Yang YH, Wang B, Xu NS, Yang GW. Field emission of one-dimensional micro- and nanostructures of zinc oxide. Appl Phys Lett. 2006;89(4):1. https://doi.org/10.1063/1.2234838.

    Article  CAS  Google Scholar 

  68. Li WQ, Ma SY, Li YF, Yang GJ, Mao YZ, Luo J, Gengzang DJ, Xu XL, Yan SH. Enhanced ethanol sensing performance of hollow ZnO-SnO2 core-shell nanofibers. Sensors Actuators B-Chem. 2015;211:392. https://doi.org/10.1016/j.snb.2015.01.090.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National R&D Program of China (No. 2020YFB2008702), the National Natural Science Foundation of China (Nos. 62033002, 61833006, 62071112 and 61973058), the 111 Project (No. B16009), the Fundamental Research Funds for the Central Universities in China (Nos. N180408018, N2004019 and N2004028), Liaoning Revitalization Talents Program (No. XLYC1807198), Liaoning Province Natural Science Foundation (No. 2020-KF-11-04), Hebei Natural Science Foundation (No. F2020501040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan-Li Meng.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, ZY., Yang, F., Zhu, HM. et al. High-response n-butanol gas sensor based on ZnO/In2O3 heterostructure. Rare Met. 42, 198–209 (2023). https://doi.org/10.1007/s12598-022-02162-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02162-3

Keywords

Navigation