Skip to main content

Advertisement

Log in

A review on TiO2 nanotubes: synthesis strategies, modifications, and applications

  • Review Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In the field of nanotechnology, titanium dioxide nanotubes (TiO2 NTs) are one of the most valued inventions. They were discovered in 1996, and have since been used in several fields including photocatalytic degradation of pollutants, hydrogen production, and dye-sensitized solar cells. This review provides a comprehensive overview of TiO2 NTs and their synthesis methods, highlighting recent progress and modifications that improve their properties. The influence of anodization parameters, the effect of annealing temperature, and modified TiO2 NT arrays, including doping and heterostructure were discussed also in detail. In addition, this article summarizes some of the recent advances in the applications of TiO2 nanotubes in photocatalysis, hydrogen production, dye-sensitized solar cells (DSSC), and the detection of heavy metal ions. Finally, the existing problems and further prospects of this renascent and rapidly developing field are also briefly addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dronov A, Gavrilin I, Kirilenko E et al (2018) Investigation of anodic TiO2 nanotube composition with high spatial resolution AES and ToF SIMS. Appl Surf Sci 434:148–154. https://doi.org/10.1016/j.apsusc.2017.10.132

    Article  CAS  Google Scholar 

  2. Devipriya SP, Yesodharan S (2010) Photocatalytic degradation of phenol in water using TiO2 and ZnO. J Environ Biol 31:247–249

    CAS  PubMed  Google Scholar 

  3. Dhanabalan SS, Avaninathan SR, Rajendran S, Carrasco MF (2020) Green Photocatalysts for Energy and Environmental Process. Springer International Publishing, Cham

    Google Scholar 

  4. Dong J, Liu Z, Dong J et al (2016) Self-organized ZnO nanorods prepared by anodization of zinc in NaOH electrolyte. RSC Adv 6:72968–72974. https://doi.org/10.1039/c6ra16995c

    Article  CAS  Google Scholar 

  5. He S, Zheng M, Yao L et al (2010) Preparation and properties of ZnO nanostructures by electrochemical anodization method 256:2557–2562. https://doi.org/10.1016/j.apsusc.2009.10.104

    Article  CAS  Google Scholar 

  6. Valerini D, Hernández S, Di Benedetto F et al (2016) Sputtered WO3 films for water splitting applications. Mater Sci Semicond Process 42:150–154. https://doi.org/10.1016/j.mssp.2015.09.013

    Article  CAS  Google Scholar 

  7. Qamar M, Gondal MA, Yamani ZH (2009) Synthesis of highly active nanocrystalline WO3 and its application in laser-induced photocatalytic removal of a dye from water. Catal Commun 10:1980–1984. https://doi.org/10.1016/j.catcom.2009.07.014

    Article  CAS  Google Scholar 

  8. Wang HG, Zhou Y, Shen Y et al (2015) Fabrication, formation mechanism and the application in lithium-ion battery of porous Fe2O3 nanotubes via single-spinneret electrospinning. Electrochim Acta 158:105–112. https://doi.org/10.1016/j.electacta.2015.01.149

    Article  CAS  Google Scholar 

  9. Suman, Chahal S, Kumar A, Kumar P (2020) Zn doped α-Fe2O3: An efficient material for UV driven photocatalysis and electrical conductivity. Crystals 10. https://doi.org/10.3390/cryst10040273

  10. Butmanov D, Savchuk T, Gavrilin I et al (2023) Temperature electrolyte influences on the phase composition of anodic CuOx nanostructures. Phys E Low-dimensional Syst Nanostructures 146:115533. https://doi.org/10.1016/j.physe.2022.115533

  11. Wu Y, Long M, Cai W et al (2009) Preparation of photocatalytic anatase nanowire films by in situ oxidation of titanium plate. Nanotechnology 20. https://doi.org/10.1088/0957-4484/20/18/185703

  12. Zhang XL, Chen Y, Cant AM et al (2013) Crystalline TiO2 nanorod aggregates: Template-free fabrication and efficient light harvesting in dye-sensitized solar cell applications. Part Part Syst Charact 30:754–758. https://doi.org/10.1002/ppsc.201300132

    Article  CAS  Google Scholar 

  13. Yang Y, Qiu M, Liu L (2016) TiO2 nanorod array@carbon cloth photocatalyst for CO2 reduction. Ceram Int 42:15081–15086. https://doi.org/10.1016/j.ceramint.2016.06.020

    Article  CAS  Google Scholar 

  14. Xu H, Ouyang S, Li P et al (2013) high-active anatase TiO2 nanosheets exposed with 95% 100 facets toward efficient H2 evolution and CO2 photoreduction. ACS Appl Mater Interfaces 5:8262. https://doi.org/10.1021/am402298g

    Article  CAS  PubMed  Google Scholar 

  15. Cheng J, Zhang M, Wu G et al (2014) Photoelectrocatalytic reduction of CO2 into chemicals using Pt-modified reduced graphene oxide combined with Pt-modified TiO2 nanotubes. Environ Sci Technol 48:7076–7084. https://doi.org/10.1021/es500364g

    Article  CAS  PubMed  Google Scholar 

  16. Fang B, Bonakdarpour A, Reilly K et al (2014) Large-scale synthesis of TiO2 microspheres with hierarchical nanostructure for highly efficient photodriven reduction of CO2 to CH4. ACS Appl Mater Interfaces 6:15488–15498. https://doi.org/10.1021/am504128t

    Article  CAS  PubMed  Google Scholar 

  17. Zhou X, Liu N, Schmuki P (2017) Photocatalysis with TiO2 Nanotubes: “Colorful” Reactivity and Designing Site-Specific Photocatalytic Centers into TiO2 Nanotubes. ACS Catal 7:3210–3235. https://doi.org/10.1021/acscatal.6b03709

    Article  CAS  Google Scholar 

  18. Cao GJ, Cui B, Wang WQ et al (2014) Fabrication and photodegradation properties of TiO2 nanotubes on porous Ti by anodization. Oral Oncol 50:2581–2587. https://doi.org/10.1016/S1003-6326(14)63386-0

    Article  CAS  Google Scholar 

  19. Adán C, Marugán J, Sánchez E et al (2016) Understanding the effect of morphology on the photocatalytic activity of TiO2 nanotube array electrodes. Electrochim Acta 191:521–529. https://doi.org/10.1016/j.electacta.2016.01.088

    Article  CAS  Google Scholar 

  20. Naboulsi I, Lebeau B, Michelin L et al (2017) Insights into the Formation and Properties of Templated Dual Mesoporous Titania with Enhanced Photocatalytic Activity. ACS Appl Mater Interfaces 9:3113–3122. https://doi.org/10.1021/acsami.6b13269

    Article  CAS  PubMed  Google Scholar 

  21. Ayal AK (2019) Effect of Anodization Duration in the TiO2 Nanotubes Formation on Ti Foil and Photoelectrochemical Properties of TiO2 Nanotubes. Al-Mustansiriyah J Sci 29:77. https://doi.org/10.23851/mjs.v29i3.640

  22. Xu Z, Yu J (2011) Visible-light-induced photoelectrochemical behaviors of Fe-modified TiO2 nanotube arrays. Nanoscale 3:3138–3144. https://doi.org/10.1039/c1nr10282f

    Article  CAS  PubMed  Google Scholar 

  23. Wu H, Zhang Z (2011) Photoelectrochemical water splitting and simultaneous photoelectrocatalytic degradation of organic pollutant on highly smooth and ordered TiO2 nanotube arrays. J Solid State Chem 184:3202–3207. https://doi.org/10.1016/j.jssc.2011.10.012

    Article  CAS  Google Scholar 

  24. Zhang Z, Hossain MF, Takahashi T (2010) Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation. Int J Hydrogen Energy 35:8528–8535. https://doi.org/10.1016/j.ijhydene.2010.03.032

    Article  CAS  Google Scholar 

  25. Chaudhary D, Singh S, Vankar VD, Khare N (2017) A ternary Ag/TiO2/CNT photoanode for efficient photoelectrochemical water splitting under visible light irradiation. Int J Hydrogen Energy 42:7826–7835. https://doi.org/10.1016/j.ijhydene.2016.12.036

    Article  CAS  Google Scholar 

  26. Fu F, Cha G, Wu Z et al (2021) Photocatalytic Hydrogen Generation from Water-Annealed TiO2 Nanotubes with White and Grey Modification. ChemElectroChem 8:240–245. https://doi.org/10.1002/celc.202001517

    Article  CAS  Google Scholar 

  27. Zhao C, Luo H, Chen F et al (2014) A novel composite of TiO2 nanotubes with remarkably high efficiency for hydrogen production in solar-driven water splitting. Energy Environ Sci 7:1700–1707. https://doi.org/10.1039/c3ee43165g

    Article  CAS  Google Scholar 

  28. Mor GK, Varghese OK, Paulose M et al (2006) A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Sol Energy Mater Sol Cells 90:2011–2075. https://doi.org/10.1016/j.solmat.2006.04.007

    Article  CAS  Google Scholar 

  29. Naduvath J, Shaw S, Bhargava P, Mallick S (2014) Effect of nanograss and annealing temperature on TiO2 nanotubes based dye sensitized solar cells. Mater Sci Forum 771:103–113. https://doi.org/10.4028/www.scientific.net/MSF.771.103

    Article  CAS  Google Scholar 

  30. Kulkarni M, Mazare A, Gongadze E et al (2015) Titanium nanostructures for biomedical applications. Nanotechnology 26. https://doi.org/10.1088/0957-4484/26/6/062002

  31. Hoyer P (1996) Formation of a Titanium Dioxide Nanotube Array. Langmuir 12:1411–1413. https://doi.org/10.1021/la9507803

    Article  CAS  Google Scholar 

  32. Lee J, Kim DH, Hong SH, Jho JY (2011) A hydrogen gas sensor employing vertically aligned TiO2 nanotube arrays prepared by template-assisted method. Sensors Actuator B Chem 160:1494–1498. https://doi.org/10.1016/j.snb.2011.08.001

    Article  CAS  Google Scholar 

  33. Michailowski A, Almawlawi D, Cheng G, Moskovits M (2001) Highly regular anatase nanotubule arrays fabricated in porous anodic templates. Chem Phys Lett 349:1–5

    Article  CAS  Google Scholar 

  34. Tsvetkov N, Larina L, Kang JK, Shevaleevskiy O (2020) Sol-gel processed TiO2 nanotube photoelectrodes for dye-sensitized solar cells with enhanced photovoltaic performance. Nanomaterials 10. https://doi.org/10.3390/nano10020296

  35. Kasuga T, Hiramatsu M, Hoson A et al (1998) Formation of Titanium Oxide Nanotube. Langmuir 14:3160–3163. https://doi.org/10.1021/la9713816

    Article  CAS  Google Scholar 

  36. Zakir O, Idouhli R, Elyaagoubi M et al (2020) Fabrication of TiO2 Nanotube by Electrochemical Anodization: Toward Photocatalytic Application. J Nanomater 2020. https://doi.org/10.1155/2020/4745726

  37. Zakir O, Ait-Karra A, Idouhli R et al (2023) Effect of anodization time on the morphological, structural, electrochemical, and photocatalytic properties of anodic TiO2 NTs. J Solid State Chem 322:123939. https://doi.org/10.1016/j.jssc.2023.123939

  38. Guangzhong L, Wenyan Z, Jian Z et al (2011) A Novel Way to Fabricate Fe Doped TiO2 Nanotubes by Anodization of TiFe Alloys. Rare Met Mater Eng 40:1510–1513. https://doi.org/10.1016/S1875-5372(11)60056-8

    Article  Google Scholar 

  39. Alijani M, Sopha H, Ng S, Macak JM (2021) High aspect ratio TiO2 nanotube layers obtained in a very short anodization time. Electrochim Acta 376:138080. https://doi.org/10.1016/j.electacta.2021.138080

  40. Pishkar N, Ghoranneviss M, Ghorannevis Z, Akbari H (2018) Study of the highly ordered TiO2 nanotubes physical properties prepared with two-step anodization. Results Phys 9:1246–1249. https://doi.org/10.1016/j.rinp.2018.02.009

    Article  Google Scholar 

  41. Janekbary KK, Gilani N, Pirbazari AE (2020) One-step fabrication of Ag/RGO doped TiO2 nanotubes during anodization process with high photocatalytic performance. J Porous Mater 27:1809–1822. https://doi.org/10.1007/s10934-020-00954-5

    Article  CAS  Google Scholar 

  42. Zhang Z, Liu Q, He M et al (2020) Quantitative Analysis of Oxide Growth During Ti Galvanostatic Anodization. J Electrochem Soc 167:113501. https://doi.org/10.1149/1945-7111/aba00b

  43. Sreekantan S, Saharudin KA, Wei LC (2011) Formation of TiO2 nanotubes via anodization and potential applications for photocatalysts, biomedical materials, and photoelectrochemical cell. IOP Conf Ser Mater Sci Eng 21. https://doi.org/10.1088/1757-899X/21/1/012002

  44. Sun Y, Yan KP (2014) Effect of anodization voltage on performance of TiO2 nanotube arrays for hydrogen generation in a two-compartment photoelectrochemical cell. Int J Hydrogen Energy 39:11368–11375. https://doi.org/10.1016/j.ijhydene.2014.05.115

    Article  CAS  Google Scholar 

  45. Prida VM, Manova E, Vega V et al (2007) Temperature influence on the anodic growth of self-aligned Titanium dioxide nanotube arrays. J Magn Magn Mater 316:110–113. https://doi.org/10.1016/j.jmmm.2007.02.021

    Article  CAS  Google Scholar 

  46. Khadiri M, Elyaagoubi M, Idouhli R et al (2020) Electrochemical Study of Anodized Titanium in Phosphoric Acid. Adv Mater Sci Eng 2020:1–11. https://doi.org/10.1155/2020/5769071

    Article  CAS  Google Scholar 

  47. Li N, Li Y, Li W et al (2016) One-Step Hydrothermal Synthesis of TiO2@MoO3 Core-Shell Nanomaterial: Microstructure, Growth Mechanism, and Improved Photochromic Property. J Phys Chem C 120:3341–3349. https://doi.org/10.1021/acs.jpcc.5b10752

    Article  CAS  Google Scholar 

  48. Zwilling V, Darque-Ceretti E, Boutry-Forveille A et al (1999) Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf Interface Anal 27:629–637. https://doi.org/10.1002/(SICI)1096-9918(199907)27:7%3c629::AID-SIA551%3e3.0.CO;2-0

    Article  CAS  Google Scholar 

  49. Zwilling V, Aucouturier M, Darque-ceretti E (1999) Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach 45:921–929

    Article  CAS  Google Scholar 

  50. Gong D, Grimes CA, Varghese OK et al (2001) Titanium oxide nanotube arrays prepared by anodic oxidation. J Mater Res 16:3331–3334. https://doi.org/10.1557/JMR.2001.0457

    Article  CAS  Google Scholar 

  51. Macak JM, Tsuchiya H, Taveira L et al (2005) Smooth anodic TiO2 nanotubes. Angew Chemie Int Ed 44:7463–7465. https://doi.org/10.1002/anie.200502781

    Article  CAS  Google Scholar 

  52. Zhang G, Huang H, Zhang Y et al (2007) Highly ordered nanoporous TiO2 and its photocatalytic properties. 9:2854–2858. https://doi.org/10.1016/j.elecom.2007.10.014

  53. Mor GK, Varghese OK (2003) Fabrication of tapered , conical-shaped titania nanotubes. 18–20. https://doi.org/10.1557/JMR.2003.0362

  54. Albu SP, Ghicov A, Macak JM et al (2007) Self-Organized, Free-Standing TiO2 Nanotube Membrane for Flow-through Photocatalytic Applications. Nano Lett 7:1286–1289. https://doi.org/10.1021/nl070264k

    Article  CAS  PubMed  Google Scholar 

  55. Paulose M, Prakasam HE, Varghese OK et al (2007) TiO2 Nanotube Arrays of 1000 µm Length by Anodization of Titanium Foil: Phenol Red Diffusion. 14992–14997. https://doi.org/10.1021/jp075258r

  56. Mor GK, Shankar K, Paulose M et al (2006) Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett 6:215–218. https://doi.org/10.1021/nl052099j

    Article  CAS  PubMed  Google Scholar 

  57. Etacheri V, Seery MK, Hinder SJ, Pillai SC (2010) Highly Visible Light Active TiO2− xNx Heterojunction Photocatalysts. Chem Mater 22:3843–3853. https://doi.org/10.1021/cm903260f

    Article  CAS  Google Scholar 

  58. Etacheri V, Seery MK, Hinder SJ, Pillai SC (2012) Nanostructured Ti1- xSxO2- yNy heterojunctions for efficient visible-light-induced photocatalysis. Inorg Chem 51:7164–7173. https://doi.org/10.1021/ic3001653

    Article  CAS  PubMed  Google Scholar 

  59. Doong RA, Chen CH, Maithreepala RA, Chang SM (2001) The influence of pH and cadmium sulfide on the photocatalytic degradation of 2-chlorophenol in titanium dioxide suspensions. Water Res 35:2873–2880. https://doi.org/10.1016/S0043-1354(00)00580-7

    Article  CAS  PubMed  Google Scholar 

  60. Kang MG, Han HE, Kim KJ (1999) Enhanced photodecomposition of 4-chlorophenol in aqueous solution by deposition of CdS on TiO2. J Photochem Photobiol A Chem 125:119–125. https://doi.org/10.1016/S1010-6030(99)00092-1

    Article  CAS  Google Scholar 

  61. Ou HH, Lo SL (2007) Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application. Sep Purif Technol 58:179–191. https://doi.org/10.1016/j.seppur.2007.07.017

    Article  CAS  Google Scholar 

  62. Abdullah M, Kamarudin SK (2017) Titanium dioxide nanotubes (TNT) in energy and environmental applications: An overview. Renew Sustain Energy Rev 76:212–225. https://doi.org/10.1016/j.rser.2017.01.057

    Article  CAS  Google Scholar 

  63. Yuan L, Meng S, Zhou Y, Yue Z (2013) Controlled synthesis of anatase TiO2 nanotube and nanowire arrays via AAO template-based hydrolysis. J Mater Chem A 1:2552–2557. https://doi.org/10.1039/c2ta00709f

    Article  CAS  Google Scholar 

  64. Jiang WF, Ling YH, Hao SJ et al (2007) In Situ Template Synthesis of TiO2 Nanotube Array Films. Key Eng Mater 336–338:2200–2202. https://doi.org/10.4028/www.scientific.net/KEM.336-338.2200

    Article  Google Scholar 

  65. Liang Y, Wang C, Kei C et al (2011) Photocatalysis of Ag-Loaded TiO2 Nanotube Arrays Formed by Atomic Layer Deposition. J Phys Chem C 115:9498–9502. https://doi.org/10.1021/jp202111p

    Article  CAS  Google Scholar 

  66. Liu L, Lim SY, Law CS et al (2020) Engineering of Broadband Nanoporous Semiconductor Photonic Crystals for Visible-Light-Driven Photocatalysis. ACS Appl Mater Interfaces 12:57079–57092. https://doi.org/10.1021/acsami.0c16914

    Article  CAS  PubMed  Google Scholar 

  67. Lim SY, Hedrich C, Jiang L et al (2021) Harnessing Slow Light in Optoelectronically Engineered Nanoporous Photonic Crystals for Visible Light-Enhanced Photocatalysis. ACS Catal 11:12947–12962. https://doi.org/10.1021/acscatal.1c03320

    Article  CAS  Google Scholar 

  68. Pang YL, Bhatia S, Abdullah AZ (2011) Process behavior of TiO2 nanotube-enhanced sonocatalytic degradation of Rhodamine B in aqueous solution. Sep Purif Technol 77:331–338. https://doi.org/10.1016/j.seppur.2010.12.023

    Article  CAS  Google Scholar 

  69. Liu Z, Liu C, Ya J, Lei E (2011) Controlled synthesis of ZnO and TiO2 nanotubes by chemical method and their application in dye-sensitized solar cells. Renew Energy 36:1177–1181. https://doi.org/10.1016/j.renene.2010.09.019

    Article  CAS  Google Scholar 

  70. Swami N, Cui Z, Nair LS (2011) Titania nanotubes: Novel nanostructures for improved osseointegration. J Heat Transfer 133:1–7. https://doi.org/10.1115/1.4002465

    Article  CAS  Google Scholar 

  71. Abida B, Lotfi C, Baranton S et al (2011) Preparation and characterization of Pt /TiO2 nanotubes catalyst for methanol electro-oxidation. Appl Catal B Environ 106:609–615. https://doi.org/10.1016/j.apcatb.2011.06.022

    Article  CAS  Google Scholar 

  72. Abdallah H, Moustafa AF, Alhathal A, El-sayed HEM (2014) Performance of a newly developed titanium oxide nanotubes / polyethersulfone blend membrane for water desalination using vacuum membrane distillation. Desalination 346:30–36. https://doi.org/10.1016/j.desal.2014.05.003

    Article  CAS  Google Scholar 

  73. Park J, Ryu Y, Kim H, Yu C (2009) Simple and fast annealing synthesis of titanium dioxide nanostructures and morphology transformation during annealing processes. Nanotechnology 20. https://doi.org/10.1088/0957-4484/20/10/105608

  74. Yuan ZY, Su BL (2004) Titanium oxide nanotubes, nanofibers and nanowires. Colloids Surfaces A Physicochem Eng Asp 241:173–183. https://doi.org/10.1016/j.colsurfa.2004.04.030

    Article  CAS  Google Scholar 

  75. Erjavec B, Kaplan R, Pintar A (2015) Effects of heat and peroxide treatment on photocatalytic activity of titanate nanotubes. Catal Today 241:15–24. https://doi.org/10.1016/j.cattod.2014.04.005

    Article  CAS  Google Scholar 

  76. Xu J, Lu M, Guo X, Li H (2005) Zinc ions surface-doped titanium dioxide nanotubes and its photocatalysis activity for degradation of methyl orange in water. J Mol Catal A Chem 226:123–127. https://doi.org/10.1016/j.molcata.2004.09.051

    Article  CAS  Google Scholar 

  77. Dong B, He B, Huang J et al (2008) High dispersion and electrocatalytic activity of Pd/titanium dioxide nanotubes catalysts for hydrazine oxidation. J Power Sources 175:266–271. https://doi.org/10.1016/j.jpowsour.2007.08.090

    Article  CAS  Google Scholar 

  78. Tsai C, Teng H (2006) Structural Features of Nanotubes Synthesized from NaOH Treatment on TiO2 with Different Post-Treatments. Chem Mater 18:367–373. https://doi.org/10.1021/cm0518527

    Article  CAS  Google Scholar 

  79. Yuan ZY, Zhou W, Su BL (2002) Hierarchical interlinked structure of titanium oxide nanofibers. Chem Commun 11:1202–1203. https://doi.org/10.1039/b202489f

    Article  CAS  Google Scholar 

  80. Tsai CC, Teng H (2004) Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatment. Chem Mater 16:4352–4358. https://doi.org/10.1021/cm049643u

    Article  CAS  Google Scholar 

  81. Chen Q, Du GH, Zhang S, Peng L-M (2002) The structure of trititanate nanotubes. Acta Crystallogr Sect B Struct Sci 58:587–593. https://doi.org/10.1107/S0108768102009084

    Article  CAS  Google Scholar 

  82. Aliofkhazraei M, Makhlouf ASH (2016) Handbook of Nanoelectrochemistry: Electrochemical Synthesis Methods. Springer International Publishing, Cham, Properties and Characterization Techniques

    Book  Google Scholar 

  83. Su Z, Zhou W (2011) Formation, morphology control and applications of anodic TiO2 nanotube arrays. J Mater Chem 21:8955. https://doi.org/10.1039/c0jm04587j

    Article  CAS  Google Scholar 

  84. Zhang S-Y, Yu D L, Li D-D et al (2014) Forming Process of Anodic TiO2 Nanotubes under a Preformed Compact Surface Layer. J Electrochem Soc 161. https://doi.org/10.1149/2.0661410jes

  85. Kulkarni M, Mazare A, Schmuki P, Iglic A (2016) Influence Of Anodization Parameters On Morphology Of TiO2 Nanostructured Surfaces. Adv Mater Lett 7:23–28. https://doi.org/10.5185/amlett.2016.6156

    Article  CAS  Google Scholar 

  86. Jankulovska M, Lana-Villarreal T, Gómez R (2010) Hierarchically organized titanium dioxide nanostructured electrodes: Quantum-sized nanowires grown on nanotubes. Electrochem Commun 12:1356–1359. https://doi.org/10.1016/j.elecom.2010.07.019

    Article  CAS  Google Scholar 

  87. Ghicov A, Tsuchiya H, MacAk JM, Schmuki P (2005) Titanium oxide nanotubes prepared in phosphate electrolytes. Electrochem Commun 7:505–509. https://doi.org/10.1016/j.elecom.2005.03.007

    Article  CAS  Google Scholar 

  88. Ghicov A, Schmuki P (2009) Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chem Commun 2791. https://doi.org/10.1039/b822726h

  89. Zhao J, Wang X, Chen R, Li L (2005) Fabrication of titanium oxide nanotube arrays by anodic oxidation. Solid State Commun 134:705–710. https://doi.org/10.1016/j.ssc.2005.02.028

    Article  CAS  Google Scholar 

  90. Beranek R, Hildebrand H, Schmuki P (2003) Self-Organized Porous Titanium Oxide Prepared in H2SO4/HF Electrolytes. Electrochem Solid-State Lett 6:B12. https://doi.org/10.1149/1.1545192

    Article  CAS  Google Scholar 

  91. Wang J, Lin Z (2009) Anodic Formation of Ordered TiO2 Nanotube Arrays: Effects of Electrolyte Temperature and Anodization Potential. J Phys Chem C 113:4026–4030. https://doi.org/10.1021/jp811201x

    Article  CAS  Google Scholar 

  92. Quiroz HP, Quintero F, Arias PJ et al (2015) Effect of fluoride and water content on the growth of TiO2 nanotubes synthesized via ethylene glycol with voltage changes during anodizing process. J Phys 614:012001. https://doi.org/10.1088/1742-6596/614/1/012001

  93. Arenas-Hernandez A, Zúñiga-Islas C, Mendoza-Cervantes JC (2020) A study of the effect of morphology on the optical and electrical properties of TiO2 nanotubes for gas sensing applications. EPJ Appl Phys 90:1–9. https://doi.org/10.1051/epjap/2020190267

    Article  Google Scholar 

  94. Antony RP, Mathews T, Ajikumar PK et al (2012) Electrochemically synthesized visible light absorbing vertically aligned N-doped TiO2 nanotube array films. Mater Res Bull 47:4491–4497. https://doi.org/10.1016/j.materresbull.2012.09.061

    Article  CAS  Google Scholar 

  95. Regonini D, Satka A, Jaroenworaluck A et al (2012) Factors influencing surface morphology of anodized TiO2 nanotubes. Electrochim Acta 74:244–253. https://doi.org/10.1016/j.electacta.2012.04.076

    Article  CAS  Google Scholar 

  96. Kapusta-Kołodziej J, Syrek K, Pawlik A et al (2017) Effects of anodizing potential and temperature on the growth of anodic TiO2 and its photoelectrochemical properties. Appl Surf Sci 396:1119–1129. https://doi.org/10.1016/j.apsusc.2016.11.097

    Article  CAS  Google Scholar 

  97. Valota A, LeClere DJ, Skeldon P et al (2009) Influence of water content on nanotubular anodic titania formed in fluoride/glycerol electrolytes. Electrochim Acta 54:4321–4327. https://doi.org/10.1016/j.electacta.2009.02.098

    Article  CAS  Google Scholar 

  98. Paulose M, Shankar K, Yoriya S et al (2006) Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 μm in Length. J Phys Chem B 110:16179–16184. https://doi.org/10.1021/jp064020k

    Article  CAS  PubMed  Google Scholar 

  99. Shankar K, Mor GK, Fitzgerald A, Grimes CA (2007) Cation effect on the electrochemical formation of very high aspect ratio TiO2 nanotube arrays in formamide-water mixtures. J Phys Chem C 111:21–26. https://doi.org/10.1021/jp066352v

    Article  CAS  Google Scholar 

  100. Yeonmi S, Seonghoon L (2008) Self-organized regular arrays of anodic TiO2 nanotubes. Nano Lett 8:3171–3173. https://doi.org/10.1021/nl801422w

    Article  CAS  Google Scholar 

  101. Macak JM, Albu SP, Schmuki P (2007) Towards ideal hexagonal self-ordering of TiO2 nanotubes. Phys Status Solidi Rapid Res Lett 1:181–183. https://doi.org/10.1002/pssr.200701148

  102. Albu SP, Ghicov A, Macak JM, Schmuki P (2007) 250 µm long anodic TiO2 nanotubes with hexagonal self-ordering. Phys Status Solidi Rapid Res Lett 1:R65–R67. https://doi.org/10.1002/pssr.200600069

  103. Kang SH, Kim JY, Kim HS, Sung YE (2008) Formation and mechanistic study of self-ordered TiO2 nanotubes on Ti substrate. J Ind Eng Chem 14:52–59. https://doi.org/10.1016/j.jiec.2007.06.004

    Article  CAS  Google Scholar 

  104. Wan J, Yan X, Ding J et al (2009) Self-organized highly ordered TiO2 nanotubes in organic aqueous system. Mater Charact 60:1534–1540. https://doi.org/10.1016/j.matchar.2009.09.002

    Article  CAS  Google Scholar 

  105. Wang N, Li H, Lü W et al (2011) Effects of TiO2 nanotubes with different diameters on gene expression and osseointegration of implants in minipigs. Biomaterials 32:6900–6911. https://doi.org/10.1016/j.biomaterials.2011.06.023

    Article  CAS  PubMed  Google Scholar 

  106. Yasuda K, Schmuki P (2007) Control of morphology and composition of self-organized zirconium titanate nanotubes formed in (NH4)2SO4/NH4F electrolytes. 52:4053–4061. https://doi.org/10.1016/j.electacta.2006.11.023

  107. Javier F, Cortes Q, Arias-monje PJ et al (2016) Empirical kinetics for the growth of titania nanotube arrays by potentiostatic anodization in ethylene glycol. JMADE 96:80–89. https://doi.org/10.1016/j.matdes.2016.02.006

    Article  CAS  Google Scholar 

  108. Sapoletova NA, Kushnir SE, Napolskii KS (2018) Anodic titanium oxide photonic crystals prepared by novel cyclic anodizing with voltage versus charge modulation. Electrochem Commun 91:5–9. https://doi.org/10.1016/j.elecom.2018.04.018

    Article  CAS  Google Scholar 

  109. Macak JM, Hildebrand H, Marten-Jahns U, Schmuki P (2008) Mechanistic aspects and growth of large diameter self-organized TiO2 nanotubes. J Electroanal Chem 621:254–266. https://doi.org/10.1016/j.jelechem.2008.01.005

    Article  CAS  Google Scholar 

  110. Bauer S, Kleber S, Schmuki P (2006) TiO2 nanotubes: Tailoring the geometry in H3PO4/HF electrolytes. Electrochem Commun 8:1321–1325. https://doi.org/10.1016/j.elecom.2006.05.030

    Article  CAS  Google Scholar 

  111. Sulka GD, Kapusta-Kołodziej J, Brzózka A, Jaskuła M (2010) Fabrication of nanoporous TiO2 by electrochemical anodization. Electrochim Acta 55:4359–4367. https://doi.org/10.1016/j.electacta.2009.12.053

    Article  CAS  Google Scholar 

  112. Macak JM, Tsuchiya H, Ghicov A et al (2007) TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Curr Opin Solid State Mater Sci 11:3–18. https://doi.org/10.1016/j.cossms.2007.08.004

    Article  CAS  Google Scholar 

  113. Regonini D, Satka A, Allsopp DWE, Jaroenworaluck A (2009) Anodised Titania Nanotubes Prepared in a Glycerol / NaF Electrolyte. 4410–4416. https://doi.org/10.1166/jnn.2009.M69

  114. Indira K, Mudali UK, Nishimura T, Rajendran N (2015) A Review on TiO2 Nanotubes: Influence of Anodization Parameters, Formation Mechanism, Properties, Corrosion Behavior, and Biomedical Applications. J Bio- Tribo-Corrosion 1:28. https://doi.org/10.1007/s40735-015-0024-x

    Article  Google Scholar 

  115. Lee K, Mazare A, Schmuki P (2014) One-Dimensional Titanium Dioxide Nanomaterials: Nanotubes. Chem Rev 114:9385–9454. https://doi.org/10.1021/cr500061m

    Article  PubMed  Google Scholar 

  116. Vega V, Montero-moreno JM, García J et al (2016) Long-Range Hexagonal Arrangement of TiO2 Nanotubes by Soft Lithography-Guided Anodization. Electrochim Acta 203:51–58. https://doi.org/10.1016/j.electacta.2016.04.016

    Article  CAS  Google Scholar 

  117. Sapoletova NA, Kushnir SE, Napolskii KS (2022) Polarization-enhanced cell walls etching of anodic titanium oxide. Nanotechnology 33:065602. https://doi.org/10.1088/1361-6528/ac345c

  118. Atyaoui A, Cachet H, Sutter EMM, Bousselmi L (2013) Effect of the anodization voltage on the dimensions and photoactivity of titania nanotubes arrays. Surf Interface Anal 45:1751–1759. https://doi.org/10.1002/sia.5317

    Article  CAS  Google Scholar 

  119. Ruan C, Paulose M, Varghese OK et al (2005) Fabrication of Highly Ordered TiO2 Nanotube Arrays Using an Organic Electrolyte. J Phys Chem B 109:15754–15759. https://doi.org/10.1021/jp052736u

    Article  CAS  PubMed  Google Scholar 

  120. Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: Synthesis and applications. Angew Chemie Int Ed 50:2904–2939. https://doi.org/10.1002/anie.201001374

    Article  CAS  Google Scholar 

  121. Zhang S, Li Y, Xu P, Liang K (2017) Effect of anodization parameters on the surface morphology and photoelectrochemical properties of TiO2 nanotubes. Int J Electrochem Sci 12:10714–10725. https://doi.org/10.20964/2017.11.80

  122. Bervian A, Coser E, Khan S et al (2017) Evolution of TiO2 nanotubular morphology obtained in ethylene glycol/glycerol mixture and its photoelectrochemical performance. Mater Res 20:962–972. https://doi.org/10.1590/1980-5373-MR-2016-0878

    Article  CAS  Google Scholar 

  123. Sulka GD, Kapusta-Kołodziej J, Brzózka A, Jaskuła M (2013) Anodic growth of TiO2 nanopore arrays at various temperatures. Electrochim Acta 104:526–535. https://doi.org/10.1016/j.electacta.2012.12.121

    Article  CAS  Google Scholar 

  124. Enachi M, Tiginyanu I, Sprincean V, Ursaki V (2010) Self-organized nucleation layer for the formation of ordered arrays of double-walled TiO2 nanotubes with temperature controlled inner diameter. Phys Status Solidi Rapid Res Lett 4:100–102. https://doi.org/10.1002/pssr.201004069

    Article  CAS  Google Scholar 

  125. Macak JM, Schmuki P (2006) Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes. Electrochim Acta 52:1258–1264. https://doi.org/10.1016/j.electacta.2006.07.021

    Article  CAS  Google Scholar 

  126. Macák J (2008) Growth of anodic self-organized titanium dioxide nanotube layers. Universität Erlangen-Nürnberg

  127. Kowalski D, Kim D, Schmuki P (2013) TiO2 nanotubes, nanochannels and mesosponge: Self-organized formation and applications. Nano Today 8:235–264. https://doi.org/10.1016/j.nantod.2013.04.010

    Article  CAS  Google Scholar 

  128. Albu SP, Roy P, Virtanen S, Schmuki P (2010) Self-organized TiO2 nanotube arrays: Critical effects on morphology and growth. Isr J Chem 50:453–467. https://doi.org/10.1002/ijch.201000059

    Article  CAS  Google Scholar 

  129. Zhou X, Nguyen NT, Özkan S, Schmuki P (2014) Anodic TiO2 nanotube layers: Why does self-organized growth occur - A mini review. Electrochem Commun 46:157–162. https://doi.org/10.1016/j.elecom.2014.06.021

    Article  CAS  Google Scholar 

  130. Wang X, Li Y, Song H et al (2016) Fluoride concentration controlled TiO2 nanotubes: The interplay of microstructure and photocatalytic performance. RSC Adv 6:18333–18339. https://doi.org/10.1039/c5ra24732b

    Article  CAS  Google Scholar 

  131. Quiroz HP, Quintero F, Arias PJ et al (2015) Effect of fluoride and water content on the growth of TiO2 nanotubes synthesized via ethylene glycol with voltage changes during anodizing process. J Phys Conf Ser 614:1–8. https://doi.org/10.1088/1742-6596/614/1/012001

    Article  CAS  Google Scholar 

  132. Hossain MF, Ahosan MS (2015) Investigation of NH4F concentration effects on TiO2 nanotube arrays fabricated by anode oxidation method. 2nd Int Conf Electr Eng Inf Commun Technol iCEEiCT 2015 1–5. https://doi.org/10.1109/ICEEICT.2015.7307430

  133. Deen KM, Farooq A, Raza MA, Haider W (2014) Effect of electrolyte composition on TiO2 nanotubular structure formation and its electrochemical evaluation. Electrochim Acta 117:329–335. https://doi.org/10.1016/j.electacta.2013.11.108

    Article  CAS  Google Scholar 

  134. Nyamukamba P, Okoh O, Mungondori H et al (2018) Synthetic Methods for Titanium Dioxide Nanoparticles: A Review. In: Titanium Dioxide - Material for a Sustainable Environment. InTech

  135. Zhong X, Yu D, Song Y et al (2014) Fabrication of large diameter TiO2 nanotubes for improved photoelectrochemical performance. Mater Res Bull 60:348–352. https://doi.org/10.1016/j.materresbull.2014.09.011

    Article  CAS  Google Scholar 

  136. Heidari Khoee M, Khoee S, Lotfi M (2019) Synthesis of titanium dioxide nanotubes with liposomal covers for carrying and extended release of 5-FU as anticancer drug in the treatment of HeLa cells. Anal Biochem 572:16–24. https://doi.org/10.1016/j.ab.2019.02.027

    Article  CAS  PubMed  Google Scholar 

  137. Raja KS, Misra M, Paramguru K (2005) Formation of self-ordered nano-tubular structure of anodic oxide layer on titanium. Electrochim Acta 51:154–165. https://doi.org/10.1016/j.electacta.2005.04.011

    Article  CAS  Google Scholar 

  138. Nirmal KA, Nhivekar GS, Khot AC et al (2022) Unraveling the Effect of the Water Content in the Electrolyte on the Resistive Switching Properties of Self-Assembled One-Dimensional Anodized TiO2 Nanotubes. J Phys Chem Lett 13:7870–7880. https://doi.org/10.1021/acs.jpclett.2c01075

    Article  CAS  PubMed  Google Scholar 

  139. Regonini D, Bowen CR, Jaroenworaluck A, Stevens R (2013) A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Mater Sci Eng R Reports 74:377–406. https://doi.org/10.1016/j.mser.2013.10.001

    Article  Google Scholar 

  140. Wei W, Berger S, Hauser C et al (2010) Transition of TiO2 nanotubes to nanopores for electrolytes with very low water contents. Electrochem Commun 12:1184–1186. https://doi.org/10.1016/j.elecom.2010.06.014

    Article  CAS  Google Scholar 

  141. Yin L, Ji S, Liu G et al (2011) Understanding the growth behavior of titania nanotubes. Electrochem Commun 13:454–457. https://doi.org/10.1016/j.elecom.2011.02.019

    Article  CAS  Google Scholar 

  142. Zakir O, mountassir El Mouchtari E, Elyaagoubi M et al (2022) Anodic TiO2 nanotube: influence of annealing temperature on the photocatalytic degradation of carbamazepine. J Aust Ceram Soc. https://doi.org/10.1007/s41779-022-00752-z

    Article  Google Scholar 

  143. Ghicov A, Tsuchiya H, Macak JM, Schmuki P (2006) Annealing effects on the photoresponse of TiO2 nanotubes. Phys Status Solidi Appl Mater Sci 203:28–30. https://doi.org/10.1002/pssa.200622041

    Article  CAS  Google Scholar 

  144. Regonini D, Jaroenworaluck A, Stevens R, Bowen CR (2010) Effect of heat treatment on the properties and structure of TiO2 nanotubes: phase composition and chemical composition. Surf Interface Anal 42:139–144. https://doi.org/10.1002/sia.3183

    Article  CAS  Google Scholar 

  145. Mathews NR, Morales ER, Cortés-Jacome MA, Toledo Antonio JA (2009) TiO2 thin films - Influence of annealing temperature on structural, optical and photocatalytic properties. Sol Energy 83:1499–1508. https://doi.org/10.1016/j.solener.2009.04.008

    Article  CAS  Google Scholar 

  146. Muaz AKM, Hashim U, Arshad MKM et al (2016) Effect of annealing temperature on structural, morphological and electrical properties of nanoparticles TiO2 thin films by sol-gel method. AIP Conf Proc 1733. https://doi.org/10.1063/1.4948905

  147. Varghese OK, Gong D, Paulose M et al (2003) Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. J Mater Res 18:156–165. https://doi.org/10.1557/JMR.2003.0022

    Article  CAS  Google Scholar 

  148. Tayade RJ, Surolia PK, Kulkarni RG, Jasra RV (2007) Photocatalytic degradation of dyes and organic contaminants in water using nanocrystalline anatase and rutile TiO2. Sci Technol Adv Mater 8:455–462. https://doi.org/10.1016/j.stam.2007.05.006

    Article  CAS  Google Scholar 

  149. Fu Y, Mo A (2018) A Review on the Electrochemically Self-organized Titania Nanotube Arrays: Synthesis, Modifications, and Biomedical Applications. Nanoscale Res Lett 13:187. https://doi.org/10.1186/s11671-018-2597-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kondo JN, Domen K (2007) Crystallization of Mesoporous Metal Oxides. 835–847. https://doi.org/10.1021/cm702176m

  151. Sun Y, Yan K, Wang G et al (2011) Effect of Annealing Temperature on the Hydrogen Production of TiO2 Nanotube Arrays in a Two-Compartment Photoelectrochemical Cell. J Phys Chem C 115:12844–12849. https://doi.org/10.1021/jp1116118

    Article  CAS  Google Scholar 

  152. Gavrilin I, Dronov A, Volkov R et al (2020) Differences in the local structure and composition of anodic TiO2 nanotubes annealed in vacuum and air. Appl Surf Sci 516:146120. https://doi.org/10.1016/j.apsusc.2020.146120

  153. Talla A, Suliali NJ, Goosen WE et al (2022) Effect of annealing temperature and atmosphere on the structural, morphological and luminescent properties of TiO2 nanotubes. Phys B Condens Matter 640:414026. https://doi.org/10.1016/j.physb.2022.414026

  154. Tighineanu A, Ruff T, Albu S et al (2010) Conductivity of TiO2 nanotubes: Influence of annealing time and temperature. Chem Phys Lett 494:260–263. https://doi.org/10.1016/j.cplett.2010.06.022

    Article  CAS  Google Scholar 

  155. Bakri AS, Sahdan MZ, Adriyanto F et al (2017) Effect of annealing temperature of titanium dioxide thin films on structural and electrical properties. In: International Conference on Engineering, Science and Nanotechnology 2016. p 030030

  156. Zhao B, Zhou J, Chen Y, Peng Y (2011) Effect of annealing temperature on the structure and optical properties of sputtered TiO2 films. J Alloys Compd 509:4060–4064. https://doi.org/10.1016/j.jallcom.2011.01.020

    Article  CAS  Google Scholar 

  157. Ge MZ, Cao CY, Huang JY et al (2016) Synthesis, modification, and photo/photoelectrocatalytic degradation applications of TiO2 nanotube arrays: A review. Nanotechnol Rev 5:75–112. https://doi.org/10.1515/ntrev-2015-0049

    Article  CAS  Google Scholar 

  158. Huang JY, Zhang KQ, Lai YK (2013) Fabrication, modification, and emerging applications of TiO2 nanotube arrays by electrochemical synthesis: A review. Int J Photoenergy 2013. https://doi.org/10.1155/2013/761971

  159. Asahi R, Morikawa T, Ohwaki T et al (2001) Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science (80- ) 293:269–271. https://doi.org/10.1126/science.1061051

  160. Gao Q, Si F, Zhang S et al (2019) Hydrogenated F-doped TiO2 for photocatalytic hydrogen evolution and pollutant degradation. Int J Hydrogen Energy 44:8011–8019. https://doi.org/10.1016/j.ijhydene.2019.01.233

    Article  CAS  Google Scholar 

  161. Trapalis C, Todorova N, Giannakopoulou T et al (2008) Preparation of fluorine-doped TiO2 photocatalysts with controlled crystalline structure. Int J Photoenergy 2008. https://doi.org/10.1155/2008/534038

  162. Li D, Haneda H, Labhsetwar NK et al (2005) Visible-light-driven photocatalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies. Chem Phys Lett 401:579–584. https://doi.org/10.1016/j.cplett.2004.11.126

    Article  CAS  Google Scholar 

  163. Yuferov YV, Popov ID, Zykov FM et al (2022) Study of the influence of anodizing parameters on the photocatalytic activity of preferred oriented TiO2 nanotubes self-doped by carbon. Appl Surf Sci 573:151366. https://doi.org/10.1016/j.apsusc.2021.151366

  164. Park JH, Kim S, Bard AJ (2006) Novel Carbon-Doped TiO2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting. Nano Lett 6:24–28. https://doi.org/10.1021/nl051807y

    Article  CAS  PubMed  Google Scholar 

  165. Lin L, Lin W, Zhu Y et al (2005) Phosphor-doped titania - A novel photocatalyst active in visible light. Chem Lett 34:284–285. https://doi.org/10.1246/cl.2005.284

    Article  CAS  Google Scholar 

  166. Lin L, Lin W, Xie JL et al (2007) Photocatalytic properties of phosphor-doped titania nanoparticles. Appl Catal B Environ 75:52–58. https://doi.org/10.1016/j.apcatb.2007.03.016

    Article  CAS  Google Scholar 

  167. Momeni MM, Ghayeb Y, Ghonchegi Z (2015) Visible light activity of sulfur-doped TiO2 nanostructure photoelectrodes prepared by single-step electrochemical anodizing process. J Solid State Electrochem 19:1359–1366. https://doi.org/10.1007/s10008-015-2758-2

    Article  CAS  Google Scholar 

  168. Umebayashi T, Yamaki T, Itoh H, Asai K (2002) Band gap narrowing of titanium dioxide by sulfur doping. Appl Phys Lett 81:454–456. https://doi.org/10.1063/1.1493647

    Article  CAS  Google Scholar 

  169. Hamadanian M, Reisi-Vanani A, Majedi A (2009) Preparation and characterization of S-doped TiO2 nanoparticles, effect of calcination temperature and evaluation of photocatalytic activity. Mater Chem Phys 116:376–382. https://doi.org/10.1016/j.matchemphys.2009.03.039

    Article  CAS  Google Scholar 

  170. Szkoda M, Lisowska-Oleksiak A, Siuzdak K (2016) Optimization of boron-doping process of titania nanotubes via electrochemical method toward enhanced photoactivity. J Solid State Electrochem 20:1765–1774. https://doi.org/10.1007/s10008-016-3185-8

    Article  CAS  Google Scholar 

  171. Lu N, Quan X, Li JY et al (2007) Fabrication of boron-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability. J Phys Chem C 111:11836–11842. https://doi.org/10.1021/jp071359d

    Article  CAS  Google Scholar 

  172. Yu J, Zhou P, Li Q (2013) New insight into the enhanced visible-light photocatalytic activities of B-, C- and B/C-doped anatase TiO2 by first-principles. Phys Chem Chem Phys 15:12040–12047. https://doi.org/10.1039/c3cp44651d

    Article  CAS  PubMed  Google Scholar 

  173. Zhou P, Yu J, Wang Y (2013) The new understanding on photocatalytic mechanism of visible-light response NS codoped anatase TiO2 by first-principles. Appl Catal B Environ 142–143:45–53. https://doi.org/10.1016/j.apcatb.2013.04.063

    Article  CAS  Google Scholar 

  174. Vitiello RP, Macak JM, Ghicov A et al (2006) N-Doping of anodic TiO2 nanotubes using heat treatment in ammonia. Electrochem Commun 8:544–548. https://doi.org/10.1016/j.elecom.2006.01.023

    Article  CAS  Google Scholar 

  175. Prabakar K, Takahashi T, Nezuka T et al (2008) Visible light-active nitrogen-doped TiO2 thin films prepared by DC magnetron sputtering used as a photocatalyst. Renew Energy 33:277–281. https://doi.org/10.1016/j.renene.2007.05.018

    Article  CAS  Google Scholar 

  176. Pomoni K, Vomvas A, Trapalis C (2008) Electrical conductivity and photoconductivity studies of TiO2 sol-gel thin films and the effect of N-doping. J Non Cryst Solids 354:4448–4457. https://doi.org/10.1016/j.jnoncrysol.2008.06.069

    Article  CAS  Google Scholar 

  177. Kim D, Fujimoto S, Schmuki P, Tsuchiya H (2008) Nitrogen doped anodic TiO2 nanotubes grown from nitrogen-containing Ti alloys. Electrochem Commun 10:910–913. https://doi.org/10.1016/j.elecom.2008.04.001

    Article  CAS  Google Scholar 

  178. Hahn R, Ghicov A, Salonen J et al (2007) Carbon doping of self-organized TiO2 nanotube layers by thermal acetylene treatment. Nanotechnology 18. https://doi.org/10.1088/0957-4484/18/10/105604

  179. Sreekantan S, Zaki SM, Lai CW, Tzu TW (2014) Copper-incorporated titania nanotubes for effective lead ion removal. Mater Sci Semicond Process 26:620–631. https://doi.org/10.1016/j.mssp.2014.05.034

    Article  CAS  Google Scholar 

  180. Momeni MM, Ghayeb Y, Ghonchegi Z (2015) Fabrication and characterization of copper doped TiO2 nanotube arrays by in situ electrochemical method as efficient visible-light photocatalyst. Ceram Int 41:8735–8741. https://doi.org/10.1016/j.ceramint.2015.03.094

    Article  CAS  Google Scholar 

  181. Zakir O, Ait Karra A, Idouhli R et al (2022) Fabrication and characterization of Ag- and Cu-doped TiO2 nanotubes (NTs) by in situ anodization method as an efficient photocatalyst. J Solid State Electrochem 26:2247–2260. https://doi.org/10.1007/s10008-022-05237-4

    Article  CAS  Google Scholar 

  182. Ghicov A, Schmidt B, Kunze J, Schmuki P (2007) Photoresponse in the visible range from Cr doped TiO2 nanotubes. Chem Phys Lett 433:323–326. https://doi.org/10.1016/j.cplett.2006.11.065

    Article  CAS  Google Scholar 

  183. Zhang H, Xing Z, Zhang Y et al (2015) Ni2+ and Ti3+ co-doped porous black anatase TiO2 with unprecedented-high visible-light-driven photocatalytic degradation performance. RSC Adv 5:107150–107157. https://doi.org/10.1039/c5ra23743b

    Article  CAS  Google Scholar 

  184. Li Z, Ding D, Liu Q et al (2014) Ni-doped TiO2 nanotubes for wide-range hydrogen sensing. Nanoscale Res Lett 9:118. https://doi.org/10.1186/1556-276X-9-118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Benjwal P, Kar KK (2015) One-step synthesis of Zn doped titania nanotubes and investigation of their visible photocatalytic activity. Mater Chem Phys 160:279–288. https://doi.org/10.1016/j.matchemphys.2015.04.038

    Article  CAS  Google Scholar 

  186. Loan TT, Huong VH, Tham VT, Long NN (2018) Effect of zinc doping on the bandgap and photoluminescence of Zn2+-doped TiO2 nanowires. Phys B Condens Matter 532:210–215. https://doi.org/10.1016/j.physb.2017.05.027

    Article  CAS  Google Scholar 

  187. Bharti B, Kumar S, Lee HN, Kumar R (2016) Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Sci Rep 6:1–12. https://doi.org/10.1038/srep32355

    Article  CAS  Google Scholar 

  188. Liu H, Liu G, Zhou Q (2009) Preparation and characterization of Zr doped TiO2 nanotube arrays on the titanium sheet and their enhanced photocatalytic activity. J Solid State Chem 182:3238–3242. https://doi.org/10.1016/j.jssc.2009.09.016

    Article  CAS  Google Scholar 

  189. Choi W, Termin A, Hoffmann MR (1994) The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. J Phys Chem 98:13669–13679. https://doi.org/10.1021/j100102a038

    Article  Google Scholar 

  190. Momeni MM, Ghayeb Y (2015) Fabrication, characterization and photoelectrochemical behavior of Fe–TiO2 nanotubes composite photoanodes for solar water splitting. J Electroanal Chem 751:43–48. https://doi.org/10.1016/j.jelechem.2015.05.035

    Article  CAS  Google Scholar 

  191. Naushad M, Rajendran S, Lichtfouse E (2020) Green Photocatalysts. Springer International Publishing, Cham

    Book  Google Scholar 

  192. Gerischer H, Lübke M (1986) A particle size effect in the sensitization of TiO2 electrodes by a CdS deposit. J Electroanal Chem 204:225–227. https://doi.org/10.1016/0022-0728(86)80520-4

    Article  CAS  Google Scholar 

  193. Chong B, Zhu W, Hou X (2017) Epitaxial hetero-structure of CdSe/TiO2 nanotube arrays with PEDOT as a hole transfer layer for photoelectrochemical hydrogen evolution. J Mater Chem A 5:6233–6244. https://doi.org/10.1039/c6ta10202f

    Article  CAS  Google Scholar 

  194. Guijarro N, Lana-Villarreal T, Mora-Seró I et al (2009) CdSe Quantum Dot-Sensitized TiO2 Electrodes: Effect of Quantum Dot Coverage and Mode of Attachment. J Phys Chem C 113:4208–4214. https://doi.org/10.1021/jp808091d

    Article  CAS  Google Scholar 

  195. Konstantinova E, Savchuk T, Pinchuk O et al (2022) Photoelectron Properties and Organic Molecules Photodegradation Activity of Titania Nanotubes with CuxO Nanoparticles Heat Treated in Air and Argon. Molecules 27:8080. https://doi.org/10.3390/molecules27228080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Hou Y, Li X, Zou X et al (2009) Photoeletrocatalytic Activity of a Cu2O-Loaded Self-Organized Highly Oriented TiO2 Nanotube Array Electrode for 4-Chlorophenol Degradation. Environ Sci Technol 43:858–863. https://doi.org/10.1021/es802420u

    Article  CAS  PubMed  Google Scholar 

  197. Shen K, Wu K, Wang D (2014) Band alignment of ultra-thin hetero-structure ZnO/TiO2 junction. Mater Res Bull 51:141–144. https://doi.org/10.1016/j.materresbull.2013.12.013

    Article  CAS  Google Scholar 

  198. Davaslıoğlu İÇ, Volkan Özdokur K, Koçak S et al (2021) WO3 decorated TiO2 nanotube array electrode: Preparation, characterization and superior photoelectrochemical performance for rhodamine B dye degradation. J Mol Struct 1241. https://doi.org/10.1016/j.molstruc.2021.130673

  199. Dai G, Yu J, Liu G (2011) Synthesis and Enhanced Visible-Light Photoelectrocatalytic Activity of p − n Junction BiOI/TiO2 Nanotube Arrays. J Phys Chem C 115:7339–7346. https://doi.org/10.1021/jp200788n

    Article  CAS  Google Scholar 

  200. Wang M, Sun L, Lin Z et al (2013) P-n Heterojunction photoelectrodes composed of Cu2O-loaded TiO2 nanotube arrays with enhanced photoelectrochemical and photoelectrocatalytic activities. Energy Environ Sci 6:1211–1220. https://doi.org/10.1039/c3ee24162a

    Article  CAS  Google Scholar 

  201. Likodimos V (2018) Photonic crystal-assisted visible light activated TiO2 photocatalysis. Appl Catal B Environ 230:269–303. https://doi.org/10.1016/j.apcatb.2018.02.039

    Article  CAS  Google Scholar 

  202. Dasgupta N, Ranjan S, Lichtfouse E (2020) Environmental Nanotechnology, vol 4. Springer International Publishing, Cham

    Google Scholar 

  203. Athanasekou CP, Likodimos V, Falaras P (2018) Recent developments of TiO2 photocatalysis involving advanced oxidation and reduction reactions in water. J Environ Chem Eng 6:7386–7394. https://doi.org/10.1016/j.jece.2018.07.026

    Article  CAS  Google Scholar 

  204. Kment S, Riboni F, Pausova S et al (2017) Photoanodes based on TiO2 and α-Fe2O3 for solar water splitting-superior role of 1D nanoarchitectures and of combined heterostructures. Chem Soc Rev 46:3716–3769

    Article  CAS  PubMed  Google Scholar 

  205. Fujishima AH (1972) Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 238:37–38. https://doi.org/10.1038/238037a0

    Article  CAS  PubMed  Google Scholar 

  206. Awitor KO, Rafqah S, Géranton G et al (2008) Photo-catalysis using titanium dioxide nanotube layers. J Photochem Photobiol A Chem 199:250–254. https://doi.org/10.1016/j.jphotochem.2008.05.023

    Article  CAS  Google Scholar 

  207. Banerjee S, Pillai SC, Falaras P et al (2014) New insights into the mechanism of visible light photocatalysis. J Phys Chem Lett 5:2543–2554. https://doi.org/10.1021/jz501030x

    Article  CAS  PubMed  Google Scholar 

  208. Sorokina L, Savitskiy A, Shtyka O et al (2022) Formation of Cu-Rh alloy nanoislands on TiO2 for photoreduction of carbon dioxide. J Alloys Compd 904:164012. https://doi.org/10.1016/j.jallcom.2022.164012

  209. Shtyka O, Ciesielski R, Kedziora A et al (2022) Catalytic activity of semiconductors under the influence of electric fields. Appl Catal A Gen 635:118541. https://doi.org/10.1016/j.apcata.2022.118541

  210. Savchuk TP, Kytina EV, Konstantinova EA et al (2022) Photocatalytic CO2 Conversion Using Anodic TiO2 Nanotube-CuxO Composites. Catalysts 12:1011. https://doi.org/10.3390/catal12091011

    Article  CAS  Google Scholar 

  211. Park SM, Razzaq A, Park YH et al (2016) Hybrid CuxO-TiO2 Heterostructured Composites for Photocatalytic CO2 Reduction into Methane Using Solar Irradiation: Sunlight into Fuel. ACS Omega 1:868–875. https://doi.org/10.1021/acsomega.6b00164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Mirkhani V, Tangestaninejad S, Moghadam M et al (2009) Photocatalytic degradation of azo dyes catalyzed by Ag doped TiO2 photocatalyst. J Iran Chem Soc 6:578–587. https://doi.org/10.1007/BF03246537

    Article  CAS  Google Scholar 

  213. Tanaka K, Padermpole K, Hisanaga T (2000) Photocatalytic degradation of commercial azo dyes. Water Res 34:327–333. https://doi.org/10.1016/S0043-1354(99)00093-7

    Article  CAS  Google Scholar 

  214. Houas A, Lachheb H, Ksibi M et al (2001) Photocatalytic degradation pathway of methylene blue in water. Appl Catal B Environ 31:145–157

    Article  CAS  Google Scholar 

  215. Bianco Prevot A, Baiocchi C, Brussino MC et al (2001) Photocatalytic Degradation of Acid Blue 80 in Aqueous Solutions Containing TiO2 Suspensions. Environ Sci Technol 35:971–976. https://doi.org/10.1021/es000162v

    Article  CAS  Google Scholar 

  216. Nasikhudin, Diantoro M, Kusumaatmaja A, Triyana K (2018) Study on Photocatalytic Properties of TiO2 Nanoparticle in various pH condition. J Phys Conf Ser 1011. https://doi.org/10.1088/1742-6596/1011/1/012069

  217. Saravanan Rajendran Mu, Naushad LC, Ponce EL (2020) Green Methods for Wastewater Treatment. Springer International Publishing, Cham

    Google Scholar 

  218. Jafari T, Moharreri E, Amin AS et al (2016) Photocatalytic water splitting - The untamed dream: A review of recent advances. Molecules 21. https://doi.org/10.3390/molecules21070900

  219. Zhang Q, Xu D, Zhou X, Zhang K (2014) Solar hydrogen generation from water splitting using ZnO/CuO hetero nanostructures. In: Energy Procedia. Elsevier Ltd, pp 345–348

  220. Sığırcık G, Aydın EB (2020) Electrochemical synthesize and characterization of ZnO/ZnS nanostructures for hydrogen production. Int J Energy Res 44:11756–11771. https://doi.org/10.1002/er.5814

    Article  CAS  Google Scholar 

  221. Online VA, Allam NK, Deyab NM, Ghany NA (2013) photoanode materials for efficient solar hydrogen production. 12274–12282. https://doi.org/10.1039/c3cp52076e

  222. Li Y, Lu G, Li S (2003) Photocatalytic production of hydrogen in single component and mixture systems of electron donors and monitoring adsorption of donors by in situ infrared spectroscopy. Chemosphere 52:843–850. https://doi.org/10.1016/S0045-6535(03)00297-2

    Article  CAS  PubMed  Google Scholar 

  223. Radecka M, Rekas M, Trenczek-Zajac A, Zakrzewska K (2008) Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis. J Power Sources 181:46–55. https://doi.org/10.1016/j.jpowsour.2007.10.082

    Article  CAS  Google Scholar 

  224. Carabin A, Drogui P, Robert D (2015) Photo-degradation of carbamazepine using TiO2 suspended photocatalysts. J Taiwan Inst Chem Eng 54:109–117. https://doi.org/10.1016/j.jtice.2015.03.006

    Article  CAS  Google Scholar 

  225. Ashokkumar M (1998) An overview on semiconductor particulate systems for photoproduction of hydrogen. Int J Hydrogen Energy 23:427–438. https://doi.org/10.1016/s0360-3199(97)00103-1

    Article  CAS  Google Scholar 

  226. Hattori M, Noda K, Kobayashi K, Matsushige K (2011) Gas phase photocatalytic decomposition of alcohols with titanium dioxide nanotube arrays in high vacuum. Phys Status Solidi Curr Top Solid State Phys 8:549–551. https://doi.org/10.1002/pssc.201000455

    Article  CAS  Google Scholar 

  227. Mor GK, Shankar K, Paulose M et al (2005) Enhanced Photocleavage of Water Using Titania Nanotube Arrays. Nano Lett 5:191–195. https://doi.org/10.1021/nl048301k

    Article  CAS  PubMed  Google Scholar 

  228. Li H, Wu S, Hood ZD et al (2020) Atomic defects in ultra-thin mesoporous TiO2 enhance photocatalytic hydrogen evolution from water splitting. Appl Surf Sci 513:145723. https://doi.org/10.1016/j.apsusc.2020.145723

  229. Zhu K, Neale NR, Miedaner A, Frank AJ (2007) Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett 7:69–74. https://doi.org/10.1021/nl062000o

    Article  CAS  PubMed  Google Scholar 

  230. Hsiao PT, Liou YJ, Teng H (2011) Electron transport patterns in TiO2 nanotube arrays based dye-sensitized solar cells under frontside and backside illuminations. J Phys Chem C 115:15018–15024. https://doi.org/10.1021/jp202681c

    Article  CAS  Google Scholar 

  231. Roy P, Kim D, Lee K et al (2010) TiO2 nanotubes and their application in dye-sensitized solar cells. Nanoscale 2:45–59. https://doi.org/10.1039/b9nr00131j

    Article  CAS  PubMed  Google Scholar 

  232. Paulose M, Shankar K, Varghese OK et al (2006) Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells. J Phys D Appl Phys 39:2498–2503. https://doi.org/10.1088/0022-3727/39/12/005

    Article  CAS  Google Scholar 

  233. Babar F, Mehmood U, Asghar H et al (2020) Nanostructured photoanode materials and their deposition methods for efficient and economical third generation dye-sensitized solar cells : A comprehensive review. Renew Sustain Energy Rev 129:109919. https://doi.org/10.1016/j.rser.2020.109919

  234. Paulose M, Shankar K, Varghese OK et al (2006) Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes. Nanotechnology 17:1446–1448. https://doi.org/10.1088/0957-4484/17/5/046

    Article  CAS  Google Scholar 

  235. Wang J, Lin Z (2012) Dye-sensitized TiO2 nanotube solar cells: Rational structural and surface engineering on TiO2 nanotubes. Chem An Asian J 7:2754–2762. https://doi.org/10.1002/asia.201200349

    Article  CAS  Google Scholar 

  236. Qi L, Yin Z, Zhang S et al (2014) The increased interface charge transfer in dye-sensitized solar cells based on well-ordered TiO2 nanotube arrays with different lengths. J Mater Res 29:745–752. https://doi.org/10.1557/jmr.2014.50

    Article  CAS  Google Scholar 

  237. Zhu W, Liu Y, Yi A et al (2019) Facile fabrication of open-ended TiO2 nanotube arrays with large area for efficient dye-sensitized solar cells. Electrochim Acta 299:339–345. https://doi.org/10.1016/j.electacta.2019.01.021

    Article  CAS  Google Scholar 

  238. Peighambardoust NS, Asl SK, Mohammadpour R, Asl SK (2019) Improved efficiency in front-side illuminated dye sensitized solar cells based on free-standing one-dimensional TiO2 nanotube array electrodes. Sol Energy 184:115–126. https://doi.org/10.1016/j.solener.2019.03.073

    Article  CAS  Google Scholar 

  239. Liu M, Zhao G, Tang Y et al (2010) A simple, stable and picomole level lead sensor fabricated on DNA-based carbon hybridized TiO2 nanotube arrays. Environ Sci Technol 44:4241–4246. https://doi.org/10.1021/es1003507

    Article  CAS  PubMed  Google Scholar 

  240. Yang L, Luo S, Su F et al (2010) Carbon-nanotube-guiding oriented growth of gold shrubs on TiO2 nanotube arrays. J Phys Chem C 114:7694–7699. https://doi.org/10.1021/jp912007g

    Article  CAS  Google Scholar 

  241. Tran.t T, Li J, Feng H et al (2014) Molecularly imprinted polymer modified TiO2 nanotube arrays for photoelectrochemical determination of perfluorooctane sulfonate (PFOS). Sens Actuat B Chem 190:745–751. https://doi.org/10.1016/j.snb.2013.09.048

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Centre of Analysis and Characterization (CAC) of the Faculty of Sciences Semlalia in Marrakesh for research facilities, and the National Center for Scientific and Technical Research (CNRST) in Rabat for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Zakir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakir, O., Ait-Karra, A., Idouhli, R. et al. A review on TiO2 nanotubes: synthesis strategies, modifications, and applications. J Solid State Electrochem 27, 2289–2307 (2023). https://doi.org/10.1007/s10008-023-05538-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05538-2

Keywords

Navigation