Skip to main content

Advertisement

Log in

Structural design of organic battery electrode materials: from DFT to artificial intelligence

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Redox-active organic materials are emerging as the new playground for the design of new exciting battery materials for rechargeable batteries because of the merits including structural diversity and tunable electrochemical properties that are not easily accessible for the inorganic counterparts. More importantly, the sustainability developed by using naturally abundant chemical elements (C, H, N, O and S) makes them as an ideal alternative material for Li-ion batteries (LIBs). However, the identification and screening of proper organic materials is still challenging in the past decades. Assisted by the artificial intelligence, this review will give a summary of the theoretical design aspects of redox-active organic materials from density-functional theory (DFT) to machine learning (ML) methods in the past two decades, with a particular emphasis on the calculation method to predict the chemical/electrochemical stability and reversibility. This review will also analyze and discuss the challenges and perspectives for the development of organic battery materials.

Graphical abstract

摘要

氧化还原活性有机材料因具有结构多样性和电化学性能可调等无机材料难以达到的优点, 正成为设计新型充电电池材料的新领域。更重要的是, 有机材料的可持续性开开发天然丰富的化学元素(C, H, N, O, S)使其成为锂离子电池的理想替代材料。然而, 在过去的几十年里, 合适的有机材料的鉴定和筛选仍然具有挑战性。本文在人工智能的辅助下, 综述了近二十年来氧化还原活性有机材料从DFT到机器学习等理论设计方面的研究进展, 重点介绍了预测化学/电化学稳定性和可逆性的计算方法。本文还将分析和讨论有机电池材料发展面临的挑战和前景。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Reproduced with permission from Ref. [47]. Copyright 2019, Royal Society of Chemistry. b General funneling model for high-throughput computational screening computation screening of material design for organic battery (right); c computation complexity of various kinds of quantum simulation methods. d Schematic categorization of different ML algorithm. c and d were plotted according to Ref. [47]. Copyright 2019, Royal Society of Chemistry. Where NLDFT is non-local density-functional theory, QSDFT is quenched solid density-functional theory, CGDFT is coarse-grained classical density-functional theory, JDFT is joint density-functional theory, EDL is electrical double layer, GGA is generalized gradient approximation, WFT is wave-function theory

Fig. 5

Reproduced with permission from Ref. [53]. Copyright 2020, American Chemical Society

Fig. 6

Copyright 2018, Elsevier B.V. b Schematic illustration and DFT calculation of LUMO/HOMO state for various SR cathode products and corresponding ESP distribution. Reproduced with permission from Ref. [55], Copyright 2019, John Wiley & Sons, Inc. c HOMO state of selected molecules/anions with different extents of reduction. Reproduced with permission from Ref. [56]. Copyright 2013, Royal Society of Chemistry. d Redox mechanism of C6O6 and MESP of LinC6O6 (n = 0, 1, 2, 3, 4, 5, 6). Reproduced with permission from Ref. [57]. Copyright 2019, John Wiley & Sons, Inc

Fig. 7

Reproduced with permission from Ref. [62]. Copyright 2018, Elsevier B.V

Fig. 8

Copyright 2017, Royal Society of Chemistry. e DFT calculated LUMO level versus experimental redox potential of s-tetrazine series material. Modified with permission from Ref. [67]. Copyright 2019, John Wiley & Sons, Inc. f Linear dependence of average working potentials and calculated LUMO energies of phenanthraquinone (PQ), benzo[1,2-b:4,3-b’]dithiophene-4,5-quinone (BDTQ), and 1,10-phenanthroline-5,6-dione (PhenQ) (solid dots). Reproduced with permission from Ref. [56]. Copyright 2013, Royal Society of Chemistry. g Comparison of computed reduction (ΔE1red) and oxidation (ΔE1ox) potentials of selected anthraquinone derivatives. Reproduced with permission from Ref. [68]. Copyright 2016, American Chemical Society. h Correlations between redox potential and electron affinity for the quinone derivatives with or without a bound Li atom. Correlation is depicted by the arrow in gray. i Change in redox potentials as a function of number of electron-donating or electron-withdrawing groups. Reproduced with permission from Ref. [69]. Copyright 2016, American Chemical Society

Fig. 9

Reproduced with permission from Ref. [70]. Copyright 2020, American Chemical Society

Fig. 10

Reproduced with permission from Ref. [76]. Copyright 2022, American Chemical Society

Fig. 11

Reproduced with permission from Ref. [79]. Copyright 2020, John Wiley & Sons, Inc. b Chemical structure and redox mechanism of N,N′-substituted phenazine derivatives and π-LP-π bonding geometry showing N 2p-lone pair electron and π orbital of neighboring aromatic ring. Reproduced with permission from Ref. [19]. Copyright 2018, Elsevier B.V. c Optimized molecular structures of neutral and radical cation state with half-wave potentials (E1/2) and reorganization energies (λ) for their redox reactions for PhPTZ and PhPXZ and their electrochemical performance. Reproduced with permission from Ref. [82]. Copyright 2020, Royal Society of Chemistry. d Calculated NICS(1) values of BBD, ANQ, and PYD (upper) LUMO energy and redox properties of cyclic 1,2-diketones. Where Ered, Etol, and Ecoord are reduction energy, net energy, coordination energy, respectively. Reproduced with permission from Ref. [83]. Copyright 2012, American Chemical Society

Fig. 12

Reproduced with permission from Ref. [86], Copyright 2020, Springer Nature Limited. b Interaction between protonated urea and AADA3 calculated by DFT. ESP ranges are from –0.3 to 0.3 kcal·mol–1. c Molecular structures of different azobenzene (AZO)-based derivatives. d Solvation energy of different azobenzene-based derivatives calculated by DFT. Reproduced with permission from Ref. [87], Copyright 2015 John Wiley & Sons, Inc

Fig. 13

Reproduced with permission from Ref. [88]. Copyright 2017, American Chemical Society. b Schematic diagram of two-step sodiation and desodiation process of TQBQ-COF electrode obtained via calculated molecular electrostatic potential (MESP) method based on optimized structure. Reproduced with permission from Ref. [90]. Copyright 2020, Springer Nature Limited. c Reaction sited assigning by calculated MESP and biredox mechanism of CuPcNA-CMP with anion (PF6) or cation (Li+) during charge/discharge process. Reproduced with permission from Ref. [91]. Copyright 2021, John Wiley & Sons, Inc

Fig. 14

Reproduced with permission from Ref. [93]. Copyright 2014, Royal Society of Chemistry. b Charge density difference isosurfaces of BQ/graphene, BQ-2Oli/graphene and BQ-2COOLi/graphene. Reproduced with permission from Ref. [94]. Copyright 2017, Springer Nature. c Schematic process for preparing NQS/MWNTs hybrid films and optical photographs of a NQS/MWNTs hybrid film. Reproduced with permission from Ref. [95]. Copyright 2017, American Chemical Society

Fig. 15

Reproduced with permission from Ref. [31]. Copyright 2010 Elsevier B.V. c Process of conversion of waste PET flakes to disodium terephthalate with Li- and Na-ion storage. Reproduced with permission from Ref. [97]. Copyright 2020, American Chemical Society

Fig. 16

Reproduced with permission from Ref. [100], Copyright 2019, John Wiley & Sons, Inc. b Snapshots of MD simulations of BQ-LiTFSI, Li-TEMPO, Na-TEMPO, K-TEMPO and Li-MeOTEMPO organic eutectic electrolyte (OEE) structure and their corresponding vdW interaction. Reproduced with permission from Ref. [92], Copyright 2021, John Wiley & Sons, Inc. MD simulation of Na+ diffusion mechanism with Na+ trajectories (small purple bullets) of in Na2C6H2O4 (upper panel) and Na4C6H2O4 (lower panel) at 1200 K for 15 ps. Reproduced with permission from Ref. [101]. Copyright 2015, American Association for the Advancement of Science. c Relative molecule geometry and d distribution of Li–O binding geometry at different concentration by calculation redial distribution function from molecular dynamics. Four electrolyte solutions with LiDFOB (LFB) concentrations of 1.0, 1.5, 2.0, and 2.5 mol·L–1 were prepared and denoted as LFB1.0, LFB1.5, LFB2.0, and LFB2.5, respectively. Reproduced with permission from Ref. [102], Copyright 2021, Elsevier B.V

Fig. 17

Reproduced with permission from Ref. [106]. Copyright 2019, Royal Society of Chemistry. b Comparison of calculated and experimental potentials of nine reported organic materials with different methods. Reproduced with permission from Ref. [107]. Copyright 2015, American Chemical Society. c High-throughput computations screening protocol for candidate molecules for electrical energy storage applications. Reproduced with permission from Ref. [108]. Copyright 2015, AIP Publishing. d Molecular property prediction flowchart by machine learning models. RNN, MW, PSA and lgP are recurrent neural networks, molecular weight, polar surface area and lipophilic properties of compounds, respectively. Reproduced with permission from Ref. [110]. Copyright 2019, Elsevier B.V

Fig. 18

Reproduced with permission from Ref. [111]. Copyright 2020, Royal Society of Chemistry

Fig. 19

Reproduced with permission from Ref. [113]. Copyright 2014, the Royal Society of Chemistry

Fig. 20

Reproduced with permission from Ref. [28]. Copyright 2019, Royal Society of Chemistry

Fig. 21

Reproduced with permission from Ref. [117]. Copyright 2021, American Chemical Society. b GP-calibrated reduction potential versus expected electronic coupling for top-10% lowest reduction potential molecules. Reproduced with permission from Ref. [118]. Copyright 2019, Royal Society of Chemistry. c A simplified representation of neural network model and neural model performance in test dataset of 2290 molecules in predicting reduction potentials. Reproduced with permission from Ref. [119]. Copyright 2022, Elsevier B.V

Fig. 22

Reproduced with permission from Ref. [121]. Copyright 2019, Royal Society of Chemistry

Fig. 23

Similar content being viewed by others

References

  1. Williams DL, Byrne JJ, Driscoll JS. A high energy density lithium/dichloroisocyanuric acid battery system. J Electrochem Soc. 1969;116(1):2. https://doi.org/10.1149/1.2411755.

    Article  CAS  Google Scholar 

  2. Rajagopalan R, Tang Y, Jia C, Ji X, Wang H. Understanding the sodium storage mechanisms of organic electrodes in sodium ion batteries: issues and solutions. Energy Environ Sci. 2020;13(6):1568. https://doi.org/10.1039/C9EE03637G.

    Article  CAS  Google Scholar 

  3. Ghosh S, Makeev MA, Macaggi ML, Qi ZM, Wang HY, Rajput NN, Martha SK, Pol VG. Dipotassium terephthalate as promising potassium storing anode with DFT calculations. Mater Today Energy. 2020;17:100454. https://doi.org/10.1016/j.mtener.2020.100454.

    Article  Google Scholar 

  4. Kapaev RR, Troshin PA. Organic-based active electrode materials for potassium batteries: status and perspectives. J Mater Chem A. 2020;8(34):17296. https://doi.org/10.1039/D0TA04741D.

    Article  CAS  Google Scholar 

  5. Luder J, Manzhos S. First-principle insights into molecular design for high-voltage organic electrode materials for Mg based batteries. Front Chem. 2020;8:83. https://doi.org/10.3389/fchem.2020.00083.

    Article  CAS  Google Scholar 

  6. Han C, Li H, Li Y, Zhu J, Zhi C. Proton-assisted calcium-ion storage in aromatic organic molecular crystal with coplanar stacked structure. Nat Commun. 2021;12(1):2400. https://doi.org/10.1038/s41467-021-22698-9.

    Article  CAS  Google Scholar 

  7. Gao YJ, Li GF, Wang F, Chu J, Yu P, Wang BS, Zhan H, Song ZP. A high-performance aqueous rechargeable zinc battery based on organic cathode integrating quinone and pyrazine. Energy Storage Mater. 2021;40:31. https://doi.org/10.1016/j.ensm.2021.05.002.

    Article  Google Scholar 

  8. Qin K, Huang J, Holguin K, Luo C. Recent advances in developing organic electrode materials for multivalent rechargeable batteries. Energy Environ Sci. 2020;13(11):3950. https://doi.org/10.1039/D0EE02111C.

    Article  CAS  Google Scholar 

  9. Xie J, Zhang Q. Recent progress in multivalent metal (Mg, Zn, Ca, and Al) and metal-ion rechargeable batteries with organic materials as promising electrodes. Small. 2019;15(15):1805061. https://doi.org/10.1002/smll.201805061.

    Article  CAS  Google Scholar 

  10. Poizot P, Gaubicher J, Renault S, Dubois L, Liang Y, Yao Y. Opportunities and challenges for organic electrodes in electrochemical energy storage. Chem Rev. 2020;120(14):6490. https://doi.org/10.1021/acs.chemrev.9b00482.

    Article  CAS  Google Scholar 

  11. Muench S, Wild A, Friebe C, Haupler B, Janoschka T, Schubert US. Polymer-based organic batteries. Chem Rev. 2016;116(16):9438. https://doi.org/10.1021/acs.chemrev.6b00070.

    Article  CAS  Google Scholar 

  12. Hager MD, Esser B, Feng X, Schuhmann W, Theato P, Schubert US. Polymer-based batteries—flexible and thin energy storage systems. Adv Mater. 2020;32(39):2000587. https://doi.org/10.1002/adma.202000587.

    Article  CAS  Google Scholar 

  13. Xie Y, Zhang K, Yamauchi Y, Oyaizu K, Jia Z. Nitroxide radical polymers for emerging plastic energy storage and organic electronics: fundamentals, materials, and applications. Mater Horiz. 2021;8(3):803. https://doi.org/10.1039/D0MH01391A.

    Article  CAS  Google Scholar 

  14. Le T, Epa VC, Burden FR, Winkler DA. Quantitative structure–property relationship modeling of diverse materials properties. Chem Rev. 2012;112(5):2889. https://doi.org/10.1021/cr200066h.

    Article  CAS  Google Scholar 

  15. Olson GB. Computational design of hierarchically structured materials. Science. 1997;277(5330):1237. https://doi.org/10.1126/science.277.5330.1237.

    Article  CAS  Google Scholar 

  16. Agrawal A, Choudhary A. Perspective: materials informatics and big data: realization of the “fourth paradigm” of science in materials science. APL Mater. 2016;4(5):053208. https://doi.org/10.1063/1.4946894.

    Article  CAS  Google Scholar 

  17. Xu Y, Liu X, Cao X, Huang C, Liu E, Qian S, Liu X, Wu Y, Dong F, Qiu CW, Qiu J, Hua K, Su W, Wu J, Xu H, Han Y, Fu C, Yin Z, Liu M, Roepman R, Dietmann S, Virta M, Kengara F, Zhang Z, Zhang L, Zhao T, Dai J, Yang J, Lan L, Luo M, Liu Z, An T, Zhang B, He X, Cong S, Liu X, Zhang W, Lewis JP, Tiedje JM, Wang Q, An Z, Wang F, Zhang L, Huang T, Lu C, Cai Z, Wang F, Zhang J. Artificial intelligence: a powerful paradigm for scientific research. The Innovation. 2021;2(4):100179. https://doi.org/10.1016/j.xinn.2021.100179.

    Article  Google Scholar 

  18. Song Z, Qian Y, Zhang T, Otani M, Zhou H. Poly(benzoquinonyl sulfide) as a high-energy organic cathode for rechargeable li and na batteries. Adv Sci. 2015;2(9):1500124. https://doi.org/10.1002/advs.201500124.

    Article  CAS  Google Scholar 

  19. Dai G, Wang X, Qian Y, Niu Z, Zhu X, Ye J, Zhao Y, Zhang X. Manipulation of conjugation to stabilize n redox-active centers for the design of high-voltage organic battery cathode. Energy Storage Mater. 2019;16:236. https://doi.org/10.1016/j.ensm.2018.06.005.

    Article  Google Scholar 

  20. Dai G, Liu Y, Niu Z, He P, Zhao Y, Zhang X, Zhou H. The design of quaternary nitrogen redox center for high-performance organic battery materials. Matter. 2019;1(4):945. https://doi.org/10.1016/j.matt.2019.05.009.

    Article  Google Scholar 

  21. Li H, Wu T, Chen Y, Liu Y, Jiang Z, Zhang X, Dai G, Zhao Y. Self-crosslinked herringbone dihydrophenazine derivatives for high performance organic batteries. Compos Commun. 2021;28:100947. https://doi.org/10.1016/j.coco.2021.100947.

    Article  Google Scholar 

  22. Dai G, He Y, Niu Z, He P, Zhang C, Zhao Y, Zhang X, Zhou H. A dual-ion organic symmetric battery constructed from phenazine-based artificial bipolar molecules. Angew Chem Int Ed. 2019;58(29):9902. https://doi.org/10.1002/anie.201901040.

    Article  CAS  Google Scholar 

  23. Dai G, Wu T, Chen H, Zhao Y. Quaternary nitrogen redox centers for battery materials. Curr Opin Electrochem. 2021;29:100745. https://doi.org/10.1016/j.coelec.2021.100745.

    Article  CAS  Google Scholar 

  24. Zhao Y, Ding Y, Li Y, Peng L, Byon HR, Goodenough JB, Yu G. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage. Chem Soc Rev. 2015;44(22):7968. https://doi.org/10.1039/C5CS00289C.

    Article  CAS  Google Scholar 

  25. Zhang C, Niu Z, Peng S, Ding Y, Zhang L, Guo X, Zhao Y, Yu G. Phenothiazine-based organic catholyte for high-capacity and long-life aqueous redox flow batteries. Adv Mater. 2019;31(24):1901052. https://doi.org/10.1002/adma.201901052.

    Article  CAS  Google Scholar 

  26. Ding Y, Zhao Y, Li Y, Goodenough JB, Yu G. A high-performance all-metallocene-based, non-aqueous redox flow battery. Energy Environ Sci. 2017;10(2):491. https://doi.org/10.1039/C6EE02057G.

    Article  CAS  Google Scholar 

  27. Xiao Y, Miara LJ, Wang Y, Ceder G. Computational screening of cathode coatings for solid-state batteries. Joule. 2019;3(5):1252. https://doi.org/10.1016/j.joule.2019.02.006.

    Article  CAS  Google Scholar 

  28. Tabor DP, Gómez-Bombarelli R, Tong L, Gordon RG, Aziz MJ, Aspuru-Guzik A. Mapping the frontiers of quinone stability in aqueous media: implications for organic aqueous redox flow batteries. J Mater Chem A. 2019;7(20):12833. https://doi.org/10.1039/C9TA03219C.

    Article  CAS  Google Scholar 

  29. Fornari RP, de Silva P. A computational protocol combining dft and cheminformatics for prediction of ph-dependent redox potentials. Molecules. 2021;26(13):3978.

    Article  CAS  Google Scholar 

  30. Chen Y, Sun S, Wang X, Shi Q. Study of lithium migration pathways in the organic electrode materials of Li-battery by dispersion-corrected density functional theory. J Phys Chem C. 2015;119(46):25719. https://doi.org/10.1021/acs.jpcc.5b07978.

    Article  CAS  Google Scholar 

  31. Sun PK, Lu HL, Zhang WW, Wu HJ, Sun SR, Liu XY. Poly(ethylene terephthalate): rubbish could be low cost anode material of lithium ion battery. Solid State Ionics. 2018;317:164. https://doi.org/10.1016/j.ssi.2018.01.024.

    Article  CAS  Google Scholar 

  32. Garrido Torres JA, Jennings PC, Hansen MH, Boes JR, Bligaard T. Low-scaling algorithm for nudged elastic band calculations using a surrogate machine learning model. Phys Rev Lett. 2019;122(15):156001. https://doi.org/10.1103/PhysRevLett.122.156001.

    Article  CAS  Google Scholar 

  33. Jinnouchi R, Karsai F, Kresse G. On-the-fly machine learning force field generation: application to melting points. Phys Rev B. 2019;100(1):014105. https://doi.org/10.1103/PhysRevB.100.014105.

    Article  CAS  Google Scholar 

  34. Sivaraman G, Guo J, Ward L, Hoyt N, Williamson M, Foster I, Benmore C, Jackson N. Automated development of molten salt machine learning potentials: application to LiCl. J Phys Chem Lett. 2021;12(17):4278. https://doi.org/10.1021/acs.jpclett.1c00901.

    Article  CAS  Google Scholar 

  35. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem. 1994;98(45):11623. https://doi.org/10.1021/j100096a001.

    Article  CAS  Google Scholar 

  36. Niu Z, Wu H, Lu Y, Xiong S, Zhu X, Zhao Y, Zhang X. Orbital-dependent redox potential regulation of quinone derivatives for electrical energy storage. RSC Adv. 2019;9(9):5164. https://doi.org/10.1039/C8RA09377F.

    Article  CAS  Google Scholar 

  37. Sun M, Dougherty AW, Huang B, Li Y, Yan CH. Accelerating atomic catalyst discovery by theoretical calculations-machine learning strategy. Adv Energy Mater. 2020;10(12):1903949. https://doi.org/10.1002/aenm.201903949.

    Article  CAS  Google Scholar 

  38. Sun M, Wong HH, Wu T, Dougherty AW, Huang B. Stepping out of transition metals: activating the dual atomic catalyst through main group elements. Adv Energy Mater. 2021;11(30):2101404. https://doi.org/10.1002/aenm.202101404.

    Article  CAS  Google Scholar 

  39. Sun M, Wong HH, Wu T, Dougherty AW, Huang B. Entanglement of spatial and energy segmentation for C1 pathways in CO2 reduction on carbon skeleton supported atomic catalysts. Adv Energy Mater. 2022;12(14):2103781. https://doi.org/10.1002/aenm.202103781.

    Article  CAS  Google Scholar 

  40. Sun M, Wu T, Dougherty AW, Lam M, Huang B, Li Y, Yan CH. Self-validated machine learning study of graphdiyne-based dual atomic catalyst. Adv Energy Mater. 2021;11(13):2003796. https://doi.org/10.1002/aenm.202003796.

    Article  CAS  Google Scholar 

  41. Sun J, Ruzsinszky A, Perdew JP. Strongly constrained and appropriately normed semilocal density functional. Phys Rev Lett. 2015;115(3):036402. https://doi.org/10.1103/PhysRevLett.115.036402.

    Article  CAS  Google Scholar 

  42. Bartók AP, Yates JR. Regularized scan functional. J Chem Phys. 2019;150(16):161101. https://doi.org/10.1063/1.5094646.

    Article  CAS  Google Scholar 

  43. Furness JW, Kaplan AD, Ning J, Perdew JP, Sun J. Accurate and numerically efficient r2SCAN meta-generalized gradient approximation. J Phys Chem Lett. 2020;11(19):8208. https://doi.org/10.1021/acs.jpclett.0c02405.

    Article  CAS  Google Scholar 

  44. Caldeweyher E, Ehlert S, Hansen A, Neugebauer H, Spicher S, Bannwarth C, Grimme S. A generally applicable atomic-charge dependent london dispersion correction. J Chem Phys. 2019;150(15):154122. https://doi.org/10.1063/1.5090222.

    Article  CAS  Google Scholar 

  45. Ehlert S, Huniar U, Ning J, Furness JW, Sun J, Kaplan AD, Perdew JP, Brandenburg JG. r2SCAN-D4: dispersion corrected meta-generalized gradient approximation for general chemical applications. J Chem Phys. 2021;154(6):061101. https://doi.org/10.1063/5.0041008.

    Article  CAS  Google Scholar 

  46. Grimme S, Hansen A, Ehlert S, Mewes JM. r2SCAN-3c: A swiss army knife composite electronic-structure method. J Chem Phys. 2021;154(6):064103. https://doi.org/10.1063/5.0040021.

    Article  CAS  Google Scholar 

  47. Ali BA, Allam NK. A first-principles roadmap and limits to design efficient supercapacitor electrode materials. Phys Chem Chem Phys. 2019;21(32):17494. https://doi.org/10.1039/c9cp02614b.

    Article  CAS  Google Scholar 

  48. Hautier G, Fischer CC, Jain A, Mueller T, Ceder G. Finding nature’s missing ternary oxide compounds using machine learning and density functional theory. Chem Mater. 2010;22(12):3762. https://doi.org/10.1021/cm100795d.

    Article  CAS  Google Scholar 

  49. Prentice JCA, Aarons J, Womack JC, Allen AEA, Andrinopoulos L, Anton L, Bell RA, Bhandari A, Bramley GA, Charlton RJ, Clements RJ, Cole DJ, Constantinescu G, Corsetti F, Dubois SM-M, Duff KKB, Escartín JM, Greco A, Hill Q, Lee LP, Linscott E, O’Regan DD, Phipps MJS, Ratcliff LE, Serrano ÁR, Tait EW, Teobaldi G, Vitale V, Yeung N, Zuehlsdorff TJ, Dziedzic J, Haynes PD, Hine NDM, Mostofi AA, Payne MC, Skylaris CK. The onetep linear-scaling density functional theory program. J Chem Phys. 2020;152(17):174111. https://doi.org/10.1063/5.0004445.

    Article  CAS  Google Scholar 

  50. Ruddigkeit L, van Deursen R, Blum LC, Reymond JL. Enumeration of 166 billion organic small molecules in the chemical universe database gdb-17. J Chem Inf Model. 2012;52(11):2864. https://doi.org/10.1021/ci300415d.

    Article  CAS  Google Scholar 

  51. Hoffmann T, Gastreich M. The next level in chemical space navigation: going far beyond enumerable compound libraries. Drug Discov Today. 2019;24(5):1148. https://doi.org/10.1016/j.drudis.2019.02.013.

    Article  CAS  Google Scholar 

  52. Sha W, Li Y, Tang S, Tian J, Zhao Y, Guo Y, Zhang W, Zhang X, Lu S, Cao YC, Cheng S. Machine learning in polymer informatics. InfoMat. 2021;3(4):353. https://doi.org/10.1002/inf2.12167.

    Article  CAS  Google Scholar 

  53. Zhang BJ, Zhang YY, Yang XD, Li GP, Zhang SK, Zhang YF, Yu DM, Liu ZS, He G. Isometric thionated naphthalene diimides as organic cathodes for high capacity lithium batteries. Chem Mater. 2020;32(24):10575. https://doi.org/10.1021/acs.chemmater.0c03661.

    Article  CAS  Google Scholar 

  54. Yao M, Senoh H, Yamazaki S, Siroma Z, Sakai T, Yasuda K. High-capacity organic positive-electrode material based on a benzoquinone derivative for use in rechargeable lithium batteries. J Power Sources. 2010;195(24):8336. https://doi.org/10.1016/j.jpowsour.2010.06.069.

    Article  CAS  Google Scholar 

  55. Ding Y, Guo X, Qian Y, Zhang L, Xue L, Goodenough JB, Yu G. A liquid-metal-enabled versatile organic alkali-ion battery. Adv Mater. 2019;31(11):1806956. https://doi.org/10.1002/adma.201806956.

    Article  CAS  Google Scholar 

  56. Liang Y, Zhang P, Chen J. Function-oriented design of conjugated carbonyl compound electrodes for high energy lithium batteries. Chem Sci. 2013;4(3):1330. https://doi.org/10.1039/c3sc22093a.

    Article  CAS  Google Scholar 

  57. Lu Y, Hou XS, Miao LC, Li L, Shi RJ, Liu LJ, Chen J. Cyclohexanehexone with ultrahigh capacity as cathode materials for lithium-ion batteries. Angewandte Chemie-Int Edit. 2019;58(21):7020. https://doi.org/10.1002/anie.201902185.

    Article  CAS  Google Scholar 

  58. Zhao Q, Wang JB, Lu Y, Li YX, Liang GX, Chen J. Oxocarbon salts for fast rechargeable batteries. Angewandte Chemie-Int Edit. 2016;55(40):12528. https://doi.org/10.1002/anie.201607194.

    Article  CAS  Google Scholar 

  59. Song Z, Qian Y, Liu X, Zhang T, Zhu Y, Yu H, Otani M, Zhou H. A quinone-based oligomeric lithium salt for superior Li–organic batteries. Energy Environ Sci. 2014;7(12):4077. https://doi.org/10.1039/C4EE02575J.

    Article  CAS  Google Scholar 

  60. Song Z, Qian Y, Gordin ML, Tang D, Xu T, Otani M, Zhan H, Zhou H, Wang D. Polyanthraquinone as a reliable organic electrode for stable and fast lithium storage. Angew Chem Int Ed. 2015;54(47):13947. https://doi.org/10.1002/anie.201506673.

    Article  CAS  Google Scholar 

  61. Song Z, Qian Y, Otani M, Zhou H. Stable Li–organic batteries with nafion-based sandwich-type separators. Adv Energy Mater. 2016;6(7):1501780. https://doi.org/10.1002/aenm.201501780.

    Article  CAS  Google Scholar 

  62. Dardenne N, Hautier G, Gohy JF, Charlier JC, Rignanese GM. Ab initio calculations of open cell voltage in newly designed ptma-based li-ion organic radical batteries. Comput Mater Sci. 2018;143:27. https://doi.org/10.1016/j.commatsci.2017.10.038.

    Article  CAS  Google Scholar 

  63. Dai G, Gao Y, Niu Z, He P, Zhang X, Zhao Y, Zhou H. Dilution of the electron density in the π-conjugated skeleton of organic cathode materials improves the discharge voltage. Chemsuschem. 2020;13(9):2264. https://doi.org/10.1002/cssc.201903502.

    Article  CAS  Google Scholar 

  64. Uno B, Kano K, Konse T, Kubota T, Matsuzaki S, Kuboyama A. Origin of the negative shift of half-wave reduction potentials of aromatic polynuclear p-quinones with increasing conjugation. Chem Pharm Bull. 1985;33(12):5155. https://doi.org/10.1248/cpb.33.5155.

    Article  CAS  Google Scholar 

  65. Yao M, Senoh H, Araki M, Sakai T, Yasuda K. Organic positive-electrode materials based on dialkoxybenzoquinone derivatives for use in rechargeable lithium batteries. ECS Trans. 2010;28(8):3. https://doi.org/10.1149/1.3490677.

    Article  CAS  Google Scholar 

  66. Liu T, Kim KC, Lee B, Chen ZM, Noda S, Jang SS, Lee SW. Self-polymerized dopamine as an organic cathode for Li- and Na-ion batteries. Energy Environ Sci. 2017;10(1):205. https://doi.org/10.1039/c6ee02641a.

    Article  CAS  Google Scholar 

  67. Min DJ, Miomandre F, Audebert P, Kwon JE, Park SY. S-tetrazines as a new electrode-active material for secondary batteries. Chemsuschem. 2019;12(2):503. https://doi.org/10.1002/cssc.201802290.

    Article  CAS  Google Scholar 

  68. Bachman JE, Curtiss LA, Assary RS. Investigation of the redox chemistry of anthraquinone derivatives using density functional theory. J Phys Chem A. 2014;118(38):8852. https://doi.org/10.1021/jp5060777.

    Article  CAS  Google Scholar 

  69. Kim KC, Liu TY, Lee SW, Jang SS. First-principles density functional theory modeling of li binding: thermodynamics and redox properties of quinone derivatives for lithium-ion batteries. J Am Chem Soc. 2016;138(7):2374. https://doi.org/10.1021/jacs.5b13279.

    Article  CAS  Google Scholar 

  70. Sieuw L, Lakraychi AE, Rambabu D, Robeyns K, Jouhara A, Borodi G, Morari C, Poizot P, Vlad A. Through-space charge modulation overriding substituent effect: rise of the redox potential at 3.35 V in a lithium-phenolate stereoelectronic isomer. Chem Mater. 2020;32(23):9996. https://doi.org/10.1021/acs.chemmater.0c02989.

    Article  CAS  Google Scholar 

  71. Banda H, Damien D, Nagarajan K, Raj A, Hariharan M, Shaijumon MM. Twisted perylene diimides with tunable redox properties for organic sodium-ion batteries. Adv Energy Mater. 2017;7(20):1701316. https://doi.org/10.1002/aenm.201701316.

    Article  CAS  Google Scholar 

  72. Cui C, Ji X, Wang PF, Xu GL, Chen L, Chen J, Kim H, Ren Y, Chen F, Yang C, Fan X, Luo C, Amine K, Wang C. Integrating multiredox centers into one framework for high-performance organic Li-ion battery cathodes. ACS Energy Lett. 2020;5(1):224. https://doi.org/10.1021/acsenergylett.9b02466.

    Article  CAS  Google Scholar 

  73. Pahlevaninezhad M, Leung P, Velasco PQ, Pahlevani M, Walsh FC, Roberts EPL. Ponce de León C. A nonaqueous organic redox flow battery using multi-electron quinone molecules. J Power Sources. 2021;500:229942. https://doi.org/10.1016/j.jpowsour.2021.229942.

    Article  CAS  Google Scholar 

  74. Lee S, Lee K, Ku K, Hong J, Park SY, Kwon JE, Kang K. Utilizing latent multi-redox activity of p-type organic cathode materials toward high energy density lithium-organic batteries. Adv Energy Mater. 2020;10(32):2001635. https://doi.org/10.1002/aenm.202001635.

    Article  CAS  Google Scholar 

  75. Zhao LB, Gao ST, He RX, Shen W, Li M. Molecular design of phenanthrenequinone derivatives as organic cathode materials. Chemsuschem. 2018;11(7):1215. https://doi.org/10.1002/cssc.201702344.

    Article  CAS  Google Scholar 

  76. Liu Y, Dai G, Chen Y, Wang R, Li H, Shi X, Zhang X, Xu Y, Zhao Y. Effective design strategy of small bipolar molecules through fused conjugation toward 25 V based redox flow batteries. ACS Energy Lett. 2022. https://doi.org/10.1021/acsenergylett.2c00198.

    Article  Google Scholar 

  77. Lambert F, Danten Y, Gatti C, Frayret C. A tool for deciphering the redox potential ranking of organic compounds: a case study of biomass-extracted quinones for sustainable energy. Phys Chem Chem Phys. 2020;22(36):20212. https://doi.org/10.1039/D0CP02045A.

    Article  CAS  Google Scholar 

  78. Wu D, Xie Z, Zhou Z, Shen P, Chen Z. Designing high-voltage carbonyl-containing polycyclic aromatic hydrocarbon cathode materials for Li-ion batteries guided by Clar’s theory. J Mater Chem A. 2015;3(37):19137. https://doi.org/10.1039/c5ta05437k.

    Article  CAS  Google Scholar 

  79. Ma T, Liu L, Wang J, Lu Y, Chen J. Charge storage mechanism and structural evolution of viologen crystals as the cathode of lithium batteries. Angew Chem Int Ed. 2020;59(28):11533. https://doi.org/10.1002/anie.202002773.

    Article  CAS  Google Scholar 

  80. Huang L, Chen Y, Liu Y, Wu T, Li H, Ye J, Dai G, Zhang X, Zhao Y. Π-extended dihydrophenazine-based polymeric cathode material for high-performance organic batteries. ACS Sustain Chem Eng. 2020;8(48):17868. https://doi.org/10.1021/acssuschemeng.0c07314.

    Article  CAS  Google Scholar 

  81. Peterson BM, Gannett CN, Melecio-Zambrano L, Fors BP, Abruña H. Effect of structural ordering on the charge storage mechanism of p-type organic electrode materials. ACS Appl Mater Interfaces. 2021;13(6):7135. https://doi.org/10.1021/acsami.0c19622.

    Article  CAS  Google Scholar 

  82. Lee K, Serdiuk IE, Kwon G, Min DJ, Kang K, Park SY, Kwon JE. Phenoxazine as a high-voltage p-type redox center for organic battery cathode materials: small structural reorganization for faster charging and narrow operating voltage. Energy Environ Sci. 2020;13(11):4142. https://doi.org/10.1039/D0EE01003K.

    Article  CAS  Google Scholar 

  83. Nokami T, Matsuo T, Inatomi Y, Hojo N, Tsukagoshi T, Yoshizawa H, Shimizu A, Kuramoto H, Komae K, Tsuyama H, Yoshida J. Polymer-bound pyrene-4,5,9,10-tetraone for fast-charge and -discharge lithium-ion batteries with high capacity. J Am Chem Soc. 2012;134(48):19694. https://doi.org/10.1021/ja306663g.

    Article  CAS  Google Scholar 

  84. Luo C, Xu GL, Ji X, Hou S, Chen L, Wang F, Jiang J, Chen Z, Ren Y, Amine K, Wang C. Reversible redox chemistry of azo compounds for sodium-ion batteries. Angew Chem Int Ed. 2018;57(11):2879. https://doi.org/10.1002/anie.201713417.

    Article  CAS  Google Scholar 

  85. Luo C, Borodin O, Ji X, Hou S, Gaskell KJ, Fan XL, Chen J, Deng T, Wang RX, Jiang JJ, Wang CS. Azo compounds as a family of organic electrode materials for alkali-ion batteries. Proc Natl Acad Sci USA. 2018;115(9):2004. https://doi.org/10.1073/pnas.1717892115.

    Article  CAS  Google Scholar 

  86. Zhang L, Qian Y, Feng R, Ding Y, Zu X, Zhang C, Guo X, Wang W, Yu G. Reversible redox chemistry in azobenzene-based organic molecules for high-capacity and long-life nonaqueous redox flow batteries. Nat Commun. 2020;11(1):3843. https://doi.org/10.1038/s41467-020-17662-y.

    Article  CAS  Google Scholar 

  87. Zu X, Zhang L, Qian Y, Zhang C, Yu G. Molecular engineering of azobenzene-based anolytes towards high-capacity aqueous redox flow batteries. Angew Chem Int Ed. 2020;59(49):22163. https://doi.org/10.1002/anie.202009279.

    Article  CAS  Google Scholar 

  88. Kim DJ, Hermann KR, Prokofjevs A, Otley MT, Pezzato C, Owczarek M, Stoddart JF. Redox-active macrocycles for organic rechargeable batteries. J Am Chem Soc. 2017;139(19):6635. https://doi.org/10.1021/jacs.7b01209.

    Article  CAS  Google Scholar 

  89. Zhang F, Cheng Y, Niu Z, Ye J, Dai G, Zhang X, Zhao Y. Tailoring the voltage gap of organic battery materials based on a multi-electron redox chemistry. Chem Electro Chem. 2020;7(7):1781. https://doi.org/10.1002/celc.202000279.

    Article  CAS  Google Scholar 

  90. Shi R, Liu L, Lu Y, Wang C, Li Y, Li L, Yan Z, Chen J. Nitrogen-rich covalent organic frameworks with multiple carbonyls for high-performance sodium batteries. Nat Commun. 2020;11(1):178. https://doi.org/10.1038/s41467-019-13739-5.

    Article  CAS  Google Scholar 

  91. Wang HG, Li Q, Wu Q, Si Z, Lv X, Liang X, Wang H, Sun L, Shi W, Song S. Conjugated microporous polymers with bipolar and double redox-active centers for high-performance dual-ion, organic symmetric battery. Adv Energy Mater. 2021;11(20):2100381. https://doi.org/10.1002/aenm.202100381.

    Article  CAS  Google Scholar 

  92. Zhang C, Chen H, Qian Y, Dai G, Zhao Y, Yu G. General design methodology for organic eutectic electrolytes toward high-energy-density redox flow batteries. Adv Mater. 2021;33(15):2008560. https://doi.org/10.1002/adma.202008560.

    Article  CAS  Google Scholar 

  93. Yu YX. A dispersion-corrected dft study on adsorption of battery active materials anthraquinone and its derivatives on monolayer graphene and h-BN. J Mater Chem A. 2014;2(23):8910. https://doi.org/10.1039/c4ta00103f.

    Article  CAS  Google Scholar 

  94. Wang JB, Zhao Q, Wang GC, Li FJ, Chen J. Enhanced adsorption of carbonyl molecules on graphene via π-Li-π interaction: a first-principle study. Sci China Mater. 2017;60(7):674. https://doi.org/10.1007/s40843-017-9047-0.

    Article  CAS  Google Scholar 

  95. Lu Y, Zhao Q, Miao LC, Tao ZL, Niu ZQ, Chen J. Flexible and free-standing organic/carbon nanotubes hybrid films as cathode for rechargeable lithium-ion batteries. J Phys Chem C. 2017;121(27):14498. https://doi.org/10.1021/acs.jpcc.7b04341.

    Article  CAS  Google Scholar 

  96. Hu B, DeBruler C, Rhodes Z, Liu TL. Long-cycling aqueous organic redox flow battery (AORFB) toward sustainable and safe energy storage. J Am Chem Soc. 2017;139(3):1207. https://doi.org/10.1021/jacs.6b10984.

    Article  CAS  Google Scholar 

  97. Ghosh S, Makeev MA, Qi ZM, Wang HY, Rajput NN, Martha SK, Pol VG. Rapid upcycling of waste polyethylene terephthalate to energy storing disodium terephthalate flowers with dft calculations. ACS Sustain Chem Eng. 2020;8(16):6252. https://doi.org/10.1021/acssuschemeng.9b07684.

    Article  CAS  Google Scholar 

  98. Mahmood A, Wang JL. A time and resource efficient machine learning assisted design of non-fullerene small molecule acceptors for P3HT-based organic solar cells and green solvent selection. J Mater Chem A. 2021;9(28):15684. https://doi.org/10.1039/D1TA04742F.

    Article  CAS  Google Scholar 

  99. Mahmood A, Irfan A, Wang JL. Developing efficient small molecule acceptors with sp2-hybridized nitrogen at different positions by density functional theory calculations, molecular dynamics simulations and machine learning. Chem A Eur J. 2022;28(2):e202103712. https://doi.org/10.1002/chem.202103712.

    Article  CAS  Google Scholar 

  100. Zhang C, Qian Y, Ding Y, Zhang L, Guo X, Zhao Y, Yu G. Biredox eutectic electrolytes derived from organic redox-active molecules: high-energy storage systems. Angew Chem Int Ed. 2019;58(21):7045. https://doi.org/10.1002/anie.201902433.

    Article  CAS  Google Scholar 

  101. Wu X, Jin S, Zhang Z, Jiang L, Mu L, Hu YS, Li H, Chen X, Armand M, Chen L, Huang X. Unraveling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries. Sci Adv. 2015;1(8):e1500330. https://doi.org/10.1126/sciadv.1500330.

    Article  Google Scholar 

  102. Chen J, Liu T, Gao L, Qian Y, Liu Y, Kong X. Tuning the solution structure of electrolyte for optimal solid-electrolyte-interphase formation in high-voltage lithium metal batteries. J Energy Chem. 2021;60:178. https://doi.org/10.1016/j.jechem.2021.01.007.

    Article  CAS  Google Scholar 

  103. Mahmood A, Irfan A, Wang JL. Machine learning and molecular dynamics simulation-assisted evolutionary design and discovery pipeline to screen efficient small molecule acceptors for PTB7-Th-based organic solar cells with over 15% efficiency. J Mater Chem A. 2022;10(8):4170. https://doi.org/10.1039/D1TA09762H.

    Article  CAS  Google Scholar 

  104. Zhang C, Niu Z, Ding Y, Zhang L, Zhou Y, Guo X, Zhang X, Zhao Y, Yu G. Highly concentrated phthalimide-based anolytes for organic redox flow batteries with enhanced reversibility. Chem. 2018;4(12):2814. https://doi.org/10.1016/j.chempr.2018.08.024.

    Article  CAS  Google Scholar 

  105. Gómez-Bombarelli R, Aguilera-Iparraguirre J, Hirzel TD, Duvenaud D, Maclaurin D, Blood-Forsythe MA, Chae HS, Einzinger M, Ha DG, Wu T, Markopoulos G, Jeon S, Kang H, Miyazaki H, Numata M, Kim S, Huang W, Hong SI, Baldo M, Adams RP, Aspuru-Guzik A. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. Nat Mater. 2016;15(10):1120. https://doi.org/10.1038/nmat4717.

    Article  CAS  Google Scholar 

  106. Narayanan B, Redfern PC, Assary RS, Curtiss LA. Accurate quantum chemical energies for 133 000 organic molecules. Chem Sci. 2019;10(31):7449. https://doi.org/10.1039/c9sc02834j.

    Article  CAS  Google Scholar 

  107. Sun SR, Chen YH, Yu J. High throughput screening of organic electrode materials for lithium battery by theoretical method. J Phys Chem C. 2015;119(46):25770. https://doi.org/10.1021/acs.jpcc.5b08609.

    Article  CAS  Google Scholar 

  108. Cheng L, Assary RS, Qu X, Jain A, Ong SP, Rajput NN, Persson K, Curtiss LA. Accelerating electrolyte discovery for energy storage with high-throughput screening. J Phys Chem Lett. 2015;6(2):283. https://doi.org/10.1021/jz502319n.

    Article  CAS  Google Scholar 

  109. Crabtree G. The joint center for energy storage research: a new paradigm for battery research and development. AIP Conf Proc. 2015;1652(1):112. https://doi.org/10.1063/1.4916174.

    Article  Google Scholar 

  110. Shen J, Nicolaou CA. Molecular property prediction: recent trends in the era of artificial intelligence. Drug Discov Today Technol. 2019. https://doi.org/10.1016/j.ddtec.2020.05.001.

    Article  Google Scholar 

  111. Cruz C, Molina A, Patil N, Ventosa E, Marcilla R, Mavrandonakis A. New insights into phenazine-based organic redox flow batteries by using high-throughput dft modelling. Sustain Energy Fuels. 2020;4(11):5513. https://doi.org/10.1039/D0SE00687D.

    Article  Google Scholar 

  112. Park JH, Liu TY, Kim KC, Lee SW, Jang SS. Systematic molecular design of ketone derivatives of aromatic molecules for lithium-ion batteries: first-principles dft modeling. Chemsuschem. 2017;10(7):1584. https://doi.org/10.1002/cssc.201601730.

    Article  CAS  Google Scholar 

  113. Er S, Suh C, Marshak MP, Aspuru-Guzik A. Computational design of molecules for an all-quinone redox flow battery. Chem Sci. 2015;6(2):885. https://doi.org/10.1039/c4sc03030c.

    Article  CAS  Google Scholar 

  114. Schwan S, Schröder D, Wegner HA, Janek J, Mollenhauer D. Substituent pattern effects on the redox potentials of quinone-based active materials for aqueous redox flow batteries. Chemsuschem. 2020;13(20):5480. https://doi.org/10.1002/cssc.202000454.

    Article  CAS  Google Scholar 

  115. Jinich A, Sanchez-Lengeling B, Ren H, Harman R, Aspuru-Guzik A. A mixed quantum chemistry/machine learning approach for the fast and accurate prediction of biochemical redox potentials and its large-scale application to 315 000 redox reactions. ACS Cent Sci. 2019;5(7):1199. https://doi.org/10.1021/acscentsci.9b00297.

    Article  CAS  Google Scholar 

  116. Faber FA, Hutchison L, Huang B, Gilmer J, Schoenholz SS, Dahl GE, Vinyals O, Kearnes S, Riley PF, von Lilienfeld OA. Prediction errors of molecular machine learning models lower than hybrid DFT error. J Chem Theory Comput. 2017;13(11):5255. https://doi.org/10.1021/acs.jctc.7b00577.

    Article  CAS  Google Scholar 

  117. Xu SQ, Liang JC, Yu YD, Liu RL, Xu Y, Zhu X, Zhao Y. Machine learning-assisted discovery of high-voltage organic materials for rechargeable batteries. J Phys Chem C. 2021;125(39):21352. https://doi.org/10.1021/acs.jpcc.1c06821.

    Article  CAS  Google Scholar 

  118. Li CH, Tabor DP. Discovery of lead low-potential radical candidates for organic radical polymer batteries with machine-learning-assisted virtual screening. J Mater Chem A. 2022. https://doi.org/10.1039/D2TA00743F.

    Article  Google Scholar 

  119. Carvalho RP, Marchiori CFN, Brandell D, Araujo CM. Artificial intelligence driven in-silico discovery of novel organic lithium-ion battery cathodes. Energy Storage Mater. 2022;44:313. https://doi.org/10.1016/j.ensm.2021.10.029.

    Article  Google Scholar 

  120. Allam O, Cho BW, Kim KC, Jang SS. Application of DFT-based machine learning for developing molecular electrode materials in Li-ion batteries. RSC Adv. 2018;8(69):39414. https://doi.org/10.1039/c8ra07112h.

    Article  CAS  Google Scholar 

  121. Allam O, Kuramshin R, Stoichev Z, Cho BW, Lee SW, Jang SS. Molecular structure–redox potential relationship for organic electrode materials: density functional theory–machine learning approach. Mater Today Energy. 2020;17:100482. https://doi.org/10.1016/j.mtener.2020.100482.

    Article  Google Scholar 

  122. Barker J, Berg LS, Hamaekers J, Maass A. Rapid prescreening of organic compounds for redox flow batteries: a graph convolutional network for predicting reaction enthalpies from smiles. Batteries Supercaps. 2021;4(9):1482. https://doi.org/10.1002/batt.202100059.

    Article  CAS  Google Scholar 

  123. Vydrov OA, Voorhis TV. Nonlocal van der Waals density functional: the simpler the better. J Chem Phys. 2010;133(24):244103. https://doi.org/10.1063/1.3521275.

    Article  CAS  Google Scholar 

  124. Sabatini R, Gorni T, de Gironcoli S. Nonlocal van der Waals density functional made simple and efficient. Phys Rev B. 2013;87(4):041108. https://doi.org/10.1103/PhysRevB.87.041108.

    Article  CAS  Google Scholar 

  125. Mahmood A, Wang JL. Machine learning for high performance organic solar cells: current scenario and future prospects. Energy Environ Sci. 2021;14(1):90. https://doi.org/10.1039/D0EE02838J.

    Article  CAS  Google Scholar 

  126. Mahmood A, Irfan A, Wang JL. Machine learning for organic photovoltaic polymers: a minireview. Chin J Polym Sci. 2022;40(8):870. https://doi.org/10.1007/s10118-022-2782-5.

    Article  CAS  Google Scholar 

  127. Jin C, Nai J, Sheng O, Yuan H, Zhang W, Tao X, Lou XW. Biomass-based materials for green lithium secondary batteries. Energy Environ Sci. 2021;14(3):1326. https://doi.org/10.1039/D0EE02848G.

    Article  CAS  Google Scholar 

  128. Liedel C. Sustainable battery materials from biomass. Chemsuschem. 2020;13(9):2110. https://doi.org/10.1002/cssc.201903577.

    Article  CAS  Google Scholar 

  129. Liu L, Solin N, Inganäs O. Bio based batteries. Adv Energy Mater. 2021;11(43):2003713. https://doi.org/10.1002/aenm.202003713.

    Article  CAS  Google Scholar 

  130. Strietzel C, Sterby M, Huang H, Strømme M, Emanuelsson R, Sjödin M. An aqueous conducting redox-polymer-based proton battery that can withstand rapid constant-voltage charging and sub-zero temperatures. Angew Chem Int Ed. 2020;59(24):9631. https://doi.org/10.1002/anie.202001191.

    Article  CAS  Google Scholar 

  131. Ham Y, Fritz NJ, Hyun G, Lee YB, Nam JS, Kim ID, Braun PV, Jeon S. 3D periodic polyimide nano-networks for ultrahigh-rate and sustainable energy storage. Energy Environ Sci. 2021;14(11):5894. https://doi.org/10.1039/D1EE01739J.

    Article  CAS  Google Scholar 

  132. Li Z, Zhang Y, Zhang J, Cao Y, Chen J, Liu H, Wang Y. Sodium-ion battery with a wide operation-temperature range from −70 to 100 °C. Angewandte Chemie Int Edit. 2022;61(13):e202116930. https://doi.org/10.1002/anie.202116930.

    Article  CAS  Google Scholar 

  133. Wang N, Dong X, Wang B, Guo Z, Wang Z, Wang R, Qiu X, Wang Y. Zinc-organic battery with a wide operation-temperature window from −70 to 150 °C. Angew Chem Int Ed. 2020;59(34):14577. https://doi.org/10.1002/anie.202005603.

    Article  CAS  Google Scholar 

  134. Yue F, Tie Z, Deng S, Wang S, Yang M, Niu Z. An ultralow temperature aqueous battery with proton chemistry. Angew Chem Int Ed. 2021;60(25):13882. https://doi.org/10.1002/anie.202103722.

    Article  CAS  Google Scholar 

  135. Lu Y, Chen J. Prospects of organic electrode materials for practical lithium batteries. Nat Rev Chem. 2020;4(3):127. https://doi.org/10.1038/s41570-020-0160-9.

    Article  CAS  Google Scholar 

  136. Kirkpatrick J, McMorrow B, Turban DHP, Gaunt AL, Spencer JS, Matthews AGDG, Obika A, Thiry L, Fortunato M, Pfau D, Castellanos LR, Petersen S, Nelson AWR, Kohli P, Mori-Sánchez P, Hassabis D, Cohen AJ. Pushing the frontiers of density functionals by solving the fractional electron problem. Science. 2021;374(6573):1385. https://doi.org/10.1126/science.abj6511.

    Article  CAS  Google Scholar 

  137. Liu P, Verdi C, Karsai F, Kresse G. Phase transitions of zirconia: machine-learned force fields beyond density functional theory. Phys Rev B. 2022;105(6):L060102. https://doi.org/10.1103/PhysRevB.105.L060102.

    Article  CAS  Google Scholar 

  138. Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, Blomberg N, Boiten JW, da Silva Santos LB, Bourne PE, Bouwman J, Brookes AJ, Clark T, Crosas M, Dillo I, Dumon O, Edmunds S, Evelo CT, Finkers R, Gonzalez-Beltran A, Gray AJG, Groth P, Goble C, Grethe JS, Heringa JT, Hoen PAC, Hooft R, Kuhn T, Kok R, Kok J, Lusher SJ, Martone ME, Mons A, Packer AL, Persson B, Rocca-Serra P, Roos M, van Schaik R, Sansone SA, Schultes E, Sengstag T, Slater T, Strawn G, Swertz MA, Thompson M, van der Lei J, van Mulligen E, Velterop J, Waagmeester A, Wittenburg P, Wolstencroft K, Zhao J, Mons B. The fair guiding principles for scientific data management and stewardship. Sci Data. 2016;3(1):160018. https://doi.org/10.1038/sdata.2016.18.

    Article  Google Scholar 

  139. Draxl C, Scheffler M. Nomad: the fair concept for big data-driven materials science. MRS Bull. 2018;43(9):676. https://doi.org/10.1557/mrs.2018.208.

    Article  Google Scholar 

  140. Andersen CW, Armiento R, Blokhin E, Conduit GJ, Dwaraknath S, Evans ML, Fekete Á, Gopakumar A, Gražulis S, Merkys A, Mohamed F, Oses C, Pizzi G, Rignanese GM, Scheidgen M, Talirz L, Toher C, Winston D, Aversa R, Choudhary K, Colinet P, Curtarolo S, Di Stefano D, Draxl C, Er S, Esters M, Fornari M, Giantomassi M, Govoni M, Hautier G, Hegde V, Horton MK, Huck P, Huhs G, Hummelshøj J, Kariryaa A, Kozinsky B, Kumbhar S, Liu M, Marzari N, Morris AJ, Mostofi AA, Persson KA, Petretto G, Purcell T, Ricci F, Rose F, Scheffler M, Speckhard D, Uhrin M, Vaitkus A, Villars P, Waroquiers D, Wolverton C, Wu M, Yang X. Optimade, an api for exchanging materials data. Sci Data. 2021;8(1):217. https://doi.org/10.1038/s41597-021-00974-z.

    Article  Google Scholar 

  141. Wigh DS, Goodman JM, Lapkin AA. A review of molecular representation in the age of machine learning. WIREs Comput Mol Sci. 2022;12(5):e1603. https://doi.org/10.1002/wcms.1603.

    Article  Google Scholar 

  142. David L, Thakkar A, Mercado R, Engkvist O. Molecular representations in ai-driven drug discovery: a review and practical guide. J Chemin. 2020;12(1):56. https://doi.org/10.1186/s13321-020-00460-5.

    Article  CAS  Google Scholar 

  143. Liu B, Ramsundar B, Kawthekar P, Shi J, Gomes J, Luu Nguyen Q, Ho S, Sloane J, Wender P, Pande V. Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS Cent Sci. 2017;3(10):1103. https://doi.org/10.1021/acscentsci.7b00303.

    Article  CAS  Google Scholar 

  144. Coley CW, Green WH, Jensen KF. Machine learning in computer-aided synthesis planning. Acc Chem Res. 2018;51(5):1281. https://doi.org/10.1021/acs.accounts.8b00087.

    Article  CAS  Google Scholar 

  145. Dong J, Zhao M, Liu Y, Su Y, Zeng X. Deep learning in retrosynthesis planning: datasets, models and tools. Brief Bioinform. 2022;1:bbab391. https://doi.org/10.1093/bib/bbab391.

    Article  CAS  Google Scholar 

  146. Jorner K, Tomberg A, Bauer C, Sköld C, Norrby PO. Organic reactivity from mechanism to machine learning. Nat Rev Chem. 2021. https://doi.org/10.1038/s41570-021-00260-x.

    Article  Google Scholar 

  147. Pollock T, Allison J, Backman D, Boyce M, Gersh M, Holm E, LeSar R, Long M. Integrated Computational Materials Engineering: a Transformational Discipline for Improved Competitiveness and National Security. Washington DC: The National Acamedies Pres. 2008. 1.

    Google Scholar 

  148. Shen Y, Borowski JE, Hardy MA, Sarpong R, Doyle AG, Cernak T. Automation and computer-assisted planning for chemical synthesis. Nat Rev Methods Prim. 2021;1(1):23. https://doi.org/10.1038/s43586-021-00022-5.

    Article  CAS  Google Scholar 

  149. Mistry A, Franco AA, Cooper SJ, Roberts SA, Viswanathan V. How machine learning will revolutionize electrochemical sciences. ACS Energy Lett. 2021;6(4):1422. https://doi.org/10.1021/acsenergylett.1c00194.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Nos. 22179031 and 22109111), the Natural Science Foundation of Zhejiang Province (Nos. LY22B030008 and LQ22B030006), the Collaborative Innovation Center of Suzhou Nano Science & Technology, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the 111 Project, the Open Research Fund of CNMGE Platform & NSCC-TJ (No. CNGME202101006) and the support from Hefei advanced computing center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Zhao or Yu-Min Qian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, TT., Dai, GL., Xu, JJ. et al. Structural design of organic battery electrode materials: from DFT to artificial intelligence. Rare Met. 42, 3269–3303 (2023). https://doi.org/10.1007/s12598-023-02358-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02358-1

Keywords

Navigation