Skip to main content

Advertisement

Log in

First-principles computational insights into lithium battery cathode materials

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Lithium-ion batteries (LIBs) are considered to be indispensable in modern society. Major advances in LIBs depend on the development of new high-performance electrode materials, which requires a fundamental understanding of their properties. First-principles calculations have become a powerful technique in developing new electrode materials for high-energy–density LIBs in terms of predicting and interpreting the characteristics and behaviors of electrode materials, understanding the charge/discharge mechanisms at the atomic scale, delivering rational design strategies for electrode materials, etc. In this review, we present an overview of first-principles calculation methods and highlight their valuable role in contemporary research on LIB cathode materials. This overview focuses on three LIB cathode scenarios, which are divided by their cationic/anionic redox mechanisms. Then, representative examples of rational cathode design based on theoretical predictions are presented. Finally, we present a personal perspective on the current challenges and future directions of first-principles calculations in LIBs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

copyright 2016, American Chemical Society. The density of states image is reprinted with permission from Ref. [31], copyright 2017, American Physical Society

Fig. 2

copyright 2014, American Chemical Society

Fig. 3

copyright 2012, American Chemical Society. c Au-Cu formation free energy calculated in the entire composition range. Reprinted with permission from Ref. [58], copyright 2019, IOP Publishing Ltd. (printed in the UK). d Varying average availability of the oxygen dumbbell hop (ODH) pathways, tetrahedron site hop (TSH) pathways and vacancies with the Li+ concentration. Reprinted with permission from Ref. [59], copyright 2001, American Physical Society

Fig. 4
Fig. 5

copyright 1998, The American Physical Society. b Schematic diagram of defects generated during the layered-to-spinel phase transition of Li0.5MnO2. Reprinted with permission from Ref. [95], copyright 2015, American Chemical Society. c Oxygen vacancy formation energy of layered LiTMO2. Reprinted with permission from Ref. [97], copyright 2018, Wiley − VCH. d Overall view of tuning thermal stability during delithiation (O—red, Ni—silver, Mn— purple, Co—blue, and Li—green). Reprinted with permission from Ref. [99], copyright 2016, American Chemical Society

Fig. 6

copyright 2018, Royal Society of Chemistry

Fig. 7

interactions. Reprinted with permission from Ref. [100], copyright 2017, American Chemical Society. f Schematic diagram of the Ni/Li exchange and magnetic moment arrangement of a triangular lattice. The three ways of relieving magnetic frustration are denoted as I, II and III. J1 represents the intraplane super-exchange interaction, and J2 and J3 represent the super-exchange interactions between layers. Reprinted with permission from Ref. [120], copyright 2018, Elsevier

Fig. 8

copyright 2020, Wiley − VCH. c Formation energy of Li2−xMnO3 (0 \(\leqslant\) x\(\leqslant\) 1). d Ground state structures of Li/vacancies in Li2−xMnO3. c, d Reprinted with permission from Ref. [121], copyright 2012, American Chemical Society

Fig. 9

copyright 2017, Royal Society of Chemistry. c Electronic structure reconstruction and defect charge compensation mechanism. The circles and balls indicate holes and electrons, respectively. Reprinted with permission from Ref. [126], copyright 2018, Elsevier

Fig. 10

copyright 2016, Royal Society of Chemistry. b Alternative charge mechanisms in Li-excess Mn oxides. Reprinted with permission from Ref. [130], copyright 2016, Nature Publishing Group. c Partial charge density of the highest occupied states for LixMnO3. d Schematic diagram of the electron donation, local electron exchange and structural variation during the delithiation of Li2MnO3. c, d reproduced with permission from Ref. [131], copyright 2020, Cell Press

Fig. 11

copyright 2014, Science Publishing Group. b Coplanar unhybridized O 2p states between layers in a 2D ordered structure of Li-excess transition metal oxides, which is compared with the random spatial distribution of unhybridized O 2p orbitals in a 3D disordered framework. The schematic diagram at the bottom shows the decrease in the O–O distance and structural distortion. Reprinted with permission from Ref. [134], copyright 2019, Wiley − VCH. c Representative MC configurations of Li1.2Mn0.4Ti0.4O2 and Li1.2Mn0.4Zr0.4O2, where Li+ sites connected by the 0-TM channel are bridged by green bonds. Reprinted with permission from Ref. [133], copyright 2019, Nature Publishing Group

Fig. 12

copyright 2012, American Chemical Society. b Four Li+ migration paths in the Li layer of Li2MnO3 and their local cation environment (the green and purple triangles represent \({\mathrm{T}}_{2b}^{\text{Li}}\) and \({\mathrm{T}}_{4g}^{\text{Li}}\), respectively, and M indicates mobile Li+). Reprinted with permission from Ref. [135], copyright 2016, American Chemical Society. c, d Trajectories of Li+ perpendicular and parallel to the domain boundary, respectively (Li—green, Mn—blue and O—red). Reprinted with permission from Ref. [30], copyright 2016, American Chemical Society

Fig. 13

copyright 2013, Royal Society of Chemistry. b Changes in the magnetic moments of Ni, O and Cl during Li1.11−zNi0.89O2 charging. The dotted line marks the starting point of OAR. Reprinted with permission from Ref. [141], copyright 2017, American Chemical Society

Fig. 14

copyright 2019, Nature Publishing Group. b Schematic diagram of the conversion and intercalation mechanism of the (LiBr)0.5(LiCl)0.5-graphite composite cathode during oxidation. Reprinted with permission from Ref. [147], copyright 2019, Nature Publishing Group

Fig. 15

copyright 2018, American Chemical Society

Fig. 16

copyright 2015, American Chemical Society. c Computed and experimental values of the diffusion coefficient of NMC materials. Reprinted with permission from Ref. [152], copyright 2015, American Chemical Society. d Screening results of the LiA0.5B0.5O2 composition space. Reprinted with permission from Ref. [153], copyright 2016, Wiley − VCH

Fig. 17

Similar content being viewed by others

References

  1. Winter, M., Barnett, B., Xu, K.: Before Li ion batteries. Chem. Rev. 118, 11433–11456 (2018). https://doi.org/10.1021/acs.chemrev.8b00422

    Article  CAS  PubMed  Google Scholar 

  2. Whittingham, M.S.: Introduction: batteries. Chem. Rev. 114, 11413 (2014). https://doi.org/10.1021/cr500639y

    Article  CAS  PubMed  Google Scholar 

  3. Yan, J.H., Liu, X.B., Li, B.Y.: Recent progress in Li-rich layered oxides as cathode materials for Li-ion batteries. RSC Adv. 4, 63268–63284 (2014). https://doi.org/10.1039/C4RA12454E

    Article  CAS  Google Scholar 

  4. Ceder, G., Doyle, M., Arora, P., et al.: Computational modeling and simulation for rechargeable batteries. MRS Bull. 27, 619–623 (2002). https://doi.org/10.1557/mrs2002.198

    Article  CAS  Google Scholar 

  5. Fan, Y.C., Chen, X., Legut, D., et al.: Modeling and theoretical design of next-generation lithium metal batteries. Energy Storage Mater. 16, 169–193 (2019). https://doi.org/10.1016/j.ensm.2018.05.007

    Article  Google Scholar 

  6. Ceder, G.: Opportunities and challenges for first-principles materials design and applications to Li battery materials. MRS Bull. 35, 693–701 (2010). https://doi.org/10.1557/mrs2010.681

    Article  CAS  Google Scholar 

  7. Ceder, G., Hautier, G., Jain, A., et al.: Recharging lithium battery research with first-principles methods. MRS Bull. 36, 185–191 (2011). https://doi.org/10.1557/mrs.2011.31

    Article  CAS  Google Scholar 

  8. Chen, A., Zhang, X., Zhou, Z.: Machine learning: accelerating materials development for energy storage and conversion. InfoMat 2, 553–576 (2020). https://doi.org/10.1002/inf2.12094

    Article  CAS  Google Scholar 

  9. Meng, Y.S., Arroyo-de Dompablo, M.E.: Recent advances in first principles computational research of cathode materials for lithium-ion batteries. Acc. Chem. Res. 46, 1171–1180 (2013). https://doi.org/10.1021/ar2002396

    Article  CAS  PubMed  Google Scholar 

  10. Wang, S.D., Wang, Z., Setyawan, W., et al.: Assessing the thermoelectric properties of sintered compounds via high-throughput ab-initio calculations. Phys. Rev. X 1, 021012 (2011). https://doi.org/10.1103/physrevx.1.021012

    Article  Google Scholar 

  11. Greeley, J., Jaramillo, T.F., Bonde, J., et al.: Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5, 909–913 (2006). https://doi.org/10.1038/nmat1752

    Article  CAS  PubMed  Google Scholar 

  12. Nolan, A.M., Zhu, Y.Z., He, X.F., et al.: Computation-accelerated design of materials and interfaces for all-solid-state lithium-ion batteries. Joule 2, 2016–2046 (2018). https://doi.org/10.1016/j.joule.2018.08.017

    Article  CAS  Google Scholar 

  13. Jain, A., Shin, Y., Persson, K.A.: Computational predictions of energy materials using density functional theory. Nat. Rev. Mater. 1, 15004 (2016). https://doi.org/10.1038/natrevmats.2015.4

    Article  CAS  Google Scholar 

  14. Urban, A., Seo, D.H., Ceder, G.: Computational understanding of Li-ion batteries. npj Comput. Mater. 2, 16002 (2016). https://doi.org/10.1038/npjcompumats.2016.2

  15. Wei, J., Chu, X., Sun, X.Y., et al.: Machine learning in materials science. InfoMat 1, 338–358 (2019). https://doi.org/10.1002/inf2.12028

    Article  CAS  Google Scholar 

  16. Song, J.H., Yoon, G., Kim, B., et al.: Anionic redox activity regulated by transition metal in lithium-rich layered oxides. Adv. Energy Mater. 10, 2001207 (2020). https://doi.org/10.1002/aenm.202001207

    Article  CAS  Google Scholar 

  17. House, R.A., Maitra, U., Jin, L.Y., et al.: What triggers oxygen loss in oxygen redox cathode materials? Chem. Mater. 31, 3293–3300 (2019). https://doi.org/10.1021/acs.chemmater.9b00227

    Article  CAS  Google Scholar 

  18. Chen, Z., Li, J., Zeng, X.C.: Unraveling oxygen evolution in Li-rich oxides: a unified modeling of the intermediate peroxo/superoxo-like dimers. JAM CHEM SOC. 141, 10751–10759 (2019)

    Article  CAS  Google Scholar 

  19. Li, X., Qiao, Y., Guo, S.H., et al.: Direct visualization of the reversible O2−/O redox process in Li-rich cathode materials. Adv. Mater. 30, 1705197 (2018). https://doi.org/10.1002/adma.201705197

    Article  CAS  Google Scholar 

  20. Koga, H., Croguennec, L., Ménétrier, M., et al.: Different oxygen redox participation for bulk and surface: a possible global explanation for the cycling mechanism of Li1.20Mn0.54Co0.13Ni0.13O2. J. Power Sources 236: 250–258 (2013). Doi https://doi.org/10.1016/j.jpowsour.2013.02.075

  21. Thackeray, M.M., Kang, S.H., Johnson, C.S., et al.: Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J. Mater. Chem. 17, 3112 (2007). https://doi.org/10.1039/b702425h

    Article  CAS  Google Scholar 

  22. Marusczyk, A., Albina, J.M., Hammerschmidt, T., et al.: Oxygen activity and peroxide formation as charge compensation mechanisms in Li2MnO3. J. Mater. Chem. A 5, 15183–15190 (2017). https://doi.org/10.1039/c7ta04164k

    Article  CAS  Google Scholar 

  23. Qiu, B., Zhang, M., Xia, Y., et al.: understanding and controlling anionic electrochemical activity in high-capacity oxides for next generation Li-ion batteries. Chem. Mat. 29, 908–915 (2017). https://doi.org/10.1149/ma2017-01/33/1590

    Article  CAS  Google Scholar 

  24. Okuoka, S., Ogasawara, Y., Suga, Y., et al.: A new sealed lithium-peroxide battery with a co-doped Li2O cathode in a superconcentrated lithium bis(fluorosulfonyl)amide electrolyte. Sci. Rep. 4, 5684 (2014). https://doi.org/10.1038/srep05684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Qiao, Y., Jiang, K.Z., Deng, H., et al.: A high-energy-density and long-life lithium-ion battery via reversible oxide–peroxide conversion. Nat. Catal. 2, 1035–1044 (2019). https://doi.org/10.1038/s41929-019-0362-z

    Article  CAS  Google Scholar 

  26. Ogasawara, Y., Hibino, M., Kobayashi, H., et al.: Charge/discharge mechanism of a new Co-doped Li2O cathode material for a rechargeable sealed lithium-peroxide battery analyzed by X-ray absorption spectroscopy. J. Power Sources 287, 220–225 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.050

    Article  CAS  Google Scholar 

  27. Qiao, Y., Deng, H., He, P., et al.: A 500 Wh/kg lithium-metal cell based on anionic redox. Joule 4, 1445–1458 (2020). https://doi.org/10.1016/j.joule.2020.05.012

    Article  CAS  Google Scholar 

  28. Shimada, Y., Kobayashi, H., Ogasawara, Y., et al.: Fluorine and copper codoping for high performance Li2O-based cathode utilizing solid-state oxygen redox. ACS Appl. Energy Mater. 2, 4389–4394 (2019). https://doi.org/10.1021/acsaem.9b00574

    Article  CAS  Google Scholar 

  29. Tsukasaki, T., Hibino, M., Ogasawara, Y., et al.: Enhanced specific capacity of Co-doped Li2O by optimization of synthesis conditions. J. Electrochem. Soc. 165, A1971–A1974 (2018). https://doi.org/10.1149/2.0071810jes

    Article  CAS  Google Scholar 

  30. Yu, H.J., So, Y.G., Kuwabara, A., et al.: Crystalline grain interior configuration affects lithium migration kinetics in Li-rich layered oxide. Nano Lett. 16, 2907–2915 (2016). https://doi.org/10.1021/acs.nanolett.5b03933

    Article  CAS  PubMed  Google Scholar 

  31. Hoang, K.: First-principles theory of doping in layered oxide electrode materials. Phys. Rev. Materials 1, 075403 (2017). https://doi.org/10.1103/physrevmaterials.1.075403

    Article  CAS  Google Scholar 

  32. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965). https://doi.org/10.1103/physrev.140.a1133

    Article  Google Scholar 

  33. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964). https://doi.org/10.1103/physrev.136.b864

    Article  Google Scholar 

  34. Sholl, D.S., Steckel, J.A.: Density functional theory: a practical introduction. John Wiley & Sons, Inc. (2009)

  35. Koch, W., Holthausen, M.C.: Elementary Quantum Chemistry, in: A chemist's guide to density functional theory, John Wiley & Sons, Inc. (2001)

  36. Langreth, D.C., Perdew, J.P.: Theory of nonuniform electronic systems. I. Analysis of the gradient approximation and a generalization that works. Phys. Rev. B 21, 5469–5493 (1980). Doi https://doi.org/10.1103/physrevb.21.5469

  37. Perdew, B.: Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  38. Chevrier, V.L., Ong, S.P., Armiento, R., et al.: Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds. Phys. Rev. B 82, 075122 (2010). https://doi.org/10.1103/physrevb.82.075122

    Article  Google Scholar 

  39. Anisimov, V.I.: First-principles calculations of the electronic structure and spectra of strongly correlated systems: LDA + U method. Spectrosc. Mott Insul. Correl. Met. (1995). https://doi.org/10.1007/978-3-642-57834-2_9

    Article  Google Scholar 

  40. Perdew, J.P.: Climbing the ladder of density functional approximations. MRS Bull. 38, 743–750 (2013). https://doi.org/10.1557/mrs.2013.178

    Article  CAS  Google Scholar 

  41. Heyd, J., Scuseria, G.E., Ernzerhof, M.: Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003). https://doi.org/10.1063/1.1564060

    Article  CAS  Google Scholar 

  42. Krukau, A.V., Vydrov, O.A., Izmaylov, A.F., et al.: Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125, 224106 (2006). https://doi.org/10.1063/1.2404663

    Article  CAS  PubMed  Google Scholar 

  43. Heyd, J., Scuseria, G.E.: Efficient hybrid density functional calculations in solids: assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional. J. Chem. Phys. 121, 1187–1192 (2004). https://doi.org/10.1063/1.1760074

    Article  CAS  PubMed  Google Scholar 

  44. Takayama, T., Kato, A., Dinnebier, R., et al.: Hyperhoneycomb Iridate β-Li2IrO3 as a platform for Kitaev magnetism. Phys. Rev. Lett. 114, 077202 (2015). https://doi.org/10.1103/PhysRevLett.114.077202

    Article  CAS  PubMed  Google Scholar 

  45. Henkelman, G., Jónsson, H.: Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000). https://doi.org/10.1063/1.1323224

    Article  CAS  Google Scholar 

  46. Henkelman, G., Uberuaga, B.P., Jónsson, H.: A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000). https://doi.org/10.1063/1.1329672

    Article  CAS  Google Scholar 

  47. van der Ven, A., Thomas, J.C., Xu, Q.C., et al.: Nondilute diffusion from first principles: Li diffusion in LixTiS2. Phys. Rev. B 78, 104306 (2008). https://doi.org/10.1103/physrevb.78.104306

    Article  Google Scholar 

  48. Mo, Y.F., Ong, S.P., Ceder, G.: Insights into diffusion mechanisms in P2 layered oxide materials by first-principles calculations. Chem. Mater. 26, 5208–5214 (2014). https://doi.org/10.1021/cm501563f

    Article  CAS  Google Scholar 

  49. He, X.F., Zhu, Y.Z., Epstein, A., et al.: Statistical variances of diffusional properties from ab initio molecular dynamics simulations. npj Comput. Mater. 4, 1–9 (2018). Doi https://doi.org/10.1038/s41524-018-0074-y

  50. Bai, Q., Yang, L.F., Chen, H.L., et al.: Computational studies of electrode materials in sodium-ion batteries. Adv. Energy Mater. 8, 1702998 (2018). https://doi.org/10.1002/aenm.201702998

    Article  CAS  Google Scholar 

  51. Wu, Q., He, B., Song, T., et al.: Cluster expansion method and its application in computational materials science. Comput. Mater. Sci. 125, 243–254 (2016). https://doi.org/10.1016/j.commatsci.2016.08.034

    Article  Google Scholar 

  52. Binder, K.: Applications of Monte Carlo methods to statistical physics. Rep. Prog. Phys. 60, 487–559 (1997). https://doi.org/10.1088/0034-4885/60/5/001

    Article  CAS  Google Scholar 

  53. Meng, Y.S., Arroyo-de Dompablo, M.E.: First principles computational materials design for energy storage materials in lithium ion batteries. Energy Environ. Sci. 2, 589 (2009). https://doi.org/10.1039/b901825e

    Article  CAS  Google Scholar 

  54. Zheng, J.Y., Ahmed, S.Z., Yuan, Y., et al.: Full band Monte Carlo simulation of AlInAsSb digital alloys. InfoMat 2, 1236–1240 (2020). https://doi.org/10.1002/inf2.12112

    Article  CAS  Google Scholar 

  55. van der Ven, A., Aydinol, M.K., Ceder, G., et al.: First-principles investigation of phase stability in LixCoO2. Phys. Rev. B 58, 2975 (1998). https://doi.org/10.1103/physrevb.58.2975

    Article  Google Scholar 

  56. Sanchez, J.M., Mohri, T.: Approximate solutions to the cluster variation free energies by the variable basis cluster expansion. Comput. Mater. Sci. 122, 301–306 (2016). https://doi.org/10.1016/j.commatsci.2016.05.035

    Article  CAS  Google Scholar 

  57. Dalton, A.S., Belak, A.A., van der Ven, A.: Thermodynamics of lithium in TiO2(B) from first principles. Chem. Mater. 24, 1568–1574 (2012). https://doi.org/10.1021/cm203283v

    Article  CAS  Google Scholar 

  58. Chang, J.H., Kleiven, D., Melander, M., et al.: CLEASE: a versatile and user-friendly implementation of cluster expansion method. J. Phys. Condens. Matter 31, 325901 (2019). https://doi.org/10.1088/1361-648x/ab1bbc

    Article  CAS  PubMed  Google Scholar 

  59. van der Ven, A., Ceder, G., Asta, M., et al.: First-principles theory of ionic diffusion with nondilute carriers. Phys. Rev. B 64, 184307 (2001). https://doi.org/10.1103/physrevb.64.184307

    Article  Google Scholar 

  60. Reuter, K., Scheffler, M.: Erratum: Composition, structure, and stability of RuO2(110) as a function of oxygen pressure. Phys. Rev. B 75, 049901 (2007). https://doi.org/10.1103/physrevb.75.049901

    Article  Google Scholar 

  61. Liang, C.P., Longo, R.C., Kong, F.T., et al.: Ab initio study on surface segregation and anisotropy of Ni-rich LiNi1–2yCoyMnyO2 (NCM) (y \(\leqslant\) 0.1) cathodes. ACS Appl. Mater. Interfaces 10, 6673–6680 (2018). Doi https://doi.org/10.1021/acsami.7b17424

  62. Cho, E., Seo, S.W., Min, K.: Theoretical prediction of surface stability and morphology of LiNiO2 cathode for Li ion batteries. ACS Appl. Mater. Interfaces 9, 33257–33266 (2017). https://doi.org/10.1021/acsami.7b08563

    Article  CAS  PubMed  Google Scholar 

  63. Zhao, S., Liu, X.W., Huo, C.F., et al.: Surface morphology of Hägg iron carbide (χ- Fe5C2) from ab initio atomistic thermodynamics. J. Catal. 294, 47–53 (2012). https://doi.org/10.1016/j.jcat.2012.07.003

    Article  CAS  Google Scholar 

  64. Reuter, K., Scheffler, M.: Composition and structure of the RuO2(110)surface in an O2 and CO environment: implications for the catalytic formation of CO2. Phys. Rev. B 68, 045407 (2003). https://doi.org/10.1103/physrevb.68.045407

    Article  Google Scholar 

  65. Assat, G., Tarascon, J.M.: Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 3, 373–386 (2018). https://doi.org/10.1038/s41560-018-0097-0

    Article  CAS  Google Scholar 

  66. Okubo, M., Yamada, A.: Molecular orbital principles of oxygen-redox battery electrodes. ACS Appl. Mater. Interfaces 9, 36463–36472 (2017). https://doi.org/10.1021/acsami.7b09835

    Article  CAS  PubMed  Google Scholar 

  67. Li, M., Liu, T.C., Bi, X.X., et al.: Cationic and anionic redox in lithium-ion based batteries. Chem. Soc. Rev. 49, 1688–1705 (2020). https://doi.org/10.1039/C8CS00426A

    Article  CAS  PubMed  Google Scholar 

  68. Li, B., Xia, D.G.: Anionic redox in rechargeable lithium batteries. Adv. Mater. 29, 1701054 (2017). https://doi.org/10.1002/adma.201701054

    Article  CAS  Google Scholar 

  69. Seo, D.H., Lee, J., Urban, A., et al.: The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat. Chem. 8, 692–697 (2016). https://doi.org/10.1038/nchem.2524

    Article  CAS  PubMed  Google Scholar 

  70. Xie, Y., Saubanère, M., Doublet, M.L.: Requirements for reversible extra-capacity in Li-rich layered oxides for Li-ion batteries. Energy Environ. Sci. 10, 266–274 (2017). https://doi.org/10.1039/C6EE02328B

    Article  CAS  Google Scholar 

  71. Saubanère, M., McCalla, E., Tarascon, J.M., et al.: The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries. Energy Environ. Sci. 9, 984–991 (2016). https://doi.org/10.1039/c5ee03048j

    Article  Google Scholar 

  72. Sathiya, M., Rousse, G., Ramesha, K., et al.: Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12, 827–835 (2013). https://doi.org/10.1038/nmat3699

    Article  CAS  PubMed  Google Scholar 

  73. Luo, K., Roberts, M.R., Hao, R., et al.: Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat. Chem. 8, 684–691 (2016). https://doi.org/10.1038/nchem.2471

    Article  CAS  PubMed  Google Scholar 

  74. Li, W., Song, B., Manthiram, A.: High-voltage positive electrode materials for lithium-ion batteries. Chem. Soc. Rev. 46, 3006–3059 (2017). https://doi.org/10.1039/c6cs00875e

    Article  CAS  PubMed  Google Scholar 

  75. Zaanen, J., Sawatzky, G.A., Allen, J.W.: Band gaps and electronic structure of transition-metal compounds. Phys. Rev. Lett. 55, 418–421 (1985). https://doi.org/10.1103/physrevlett.55.418

    Article  CAS  PubMed  Google Scholar 

  76. Ben Yahia, M., Vergnet, J., Saubanère, M., et al.: Unified picture of anionic redox in Li/Na-ion batteries. Nat. Mater. 18, 496–502 (2019). https://doi.org/10.1038/s41563-019-0318-3

    Article  CAS  PubMed  Google Scholar 

  77. House, R.A., Rees, G.J., Pérez-Osorio, M.A., et al.: First-cycle voltage hysteresis in Li-rich 3d cathodes associated with molecular O2 trapped in the bulk. Nat. Energy 5, 777–785 (2020). https://doi.org/10.1038/s41560-020-00697-2

    Article  CAS  Google Scholar 

  78. House, R.A., Marie, J.J., Pérez-Osorio, M.A., et al.: The role of O2 in O-redox cathodes for Li-ion batteries. Nat. Energy , 1–9 (2021). Doi https://doi.org/10.1038/s41560-021-00780-2

  79. Kitchaev, D.A., Vinckeviciute, J., van der Ven, A.: Delocalized metal–oxygen π-redox is the origin of anomalous nonhysteretic capacity in Li-ion and Na-ion cathode materials. J. Am. Chem. Soc. 143, 1908–1916 (2021). https://doi.org/10.1021/jacs.0c10704

    Article  CAS  PubMed  Google Scholar 

  80. Vinckeviciute, J., Kitchaev, D.A., van der Ven, A.: A two-step oxidation mechanism controlled by Mn migration explains the first-cycle activation behavior of Li2MnO3-based Li-excess materials. Chem. Mater. 33, 1625–1636 (2021). https://doi.org/10.1021/acs.chemmater.0c03734

    Article  CAS  Google Scholar 

  81. Sathiya, M., Leriche, J.B., Salager, E., et al.: Electron paramagnetic resonance imaging for real-time monitoring of Li-ion batteries. Nat. Commun. 6, 1–7 (2015). https://doi.org/10.1038/ncomms7276

    Article  CAS  Google Scholar 

  82. Hy, S., Liu, H.D., Zhang, M.H., et al.: Performance and design considerations for lithium excess layered oxide positive electrode materials for lithium ion batteries. Energy Environ. Sci. 9, 1931–1954 (2016). https://doi.org/10.1039/c5ee03573b

    Article  CAS  Google Scholar 

  83. Thackeray, M.M.: Structural considerations of layered and spinel lithiated oxides for lithium ion batteries. J. Electrochem. Soc. 142, 2558–2563 (1995). https://doi.org/10.1149/1.2050053

    Article  CAS  Google Scholar 

  84. Wolverton, C., Zunger, A.: Cation and vacancy ordering in LixCoO2. Phys. Rev. B 57, 2242 (1998). https://doi.org/10.1103/physrevb.57.2242

    Article  CAS  Google Scholar 

  85. Lee, H.S., Kim, J., Kihoi, S.K., et al.: Formation of a partially ordered CuPt-type structure and twinning in Zn-doped SnTe-based thermoelectric materials. Mater. Lett. 249, 189–192 (2019). https://doi.org/10.1016/j.matlet.2019.04.085

    Article  CAS  Google Scholar 

  86. Qian, D.N., Hinuma, Y., Chen, H.L., et al.: Electronic spin transition in nanosize stoichiometric lithium cobalt oxide. J. Am. Chem. Soc. 134, 6096–6099 (2012). https://doi.org/10.1021/ja300868e

    Article  CAS  PubMed  Google Scholar 

  87. Kramer, D., Ceder, G.: Tailoring the morphology of LiCoO2: a first principles study. Chem. Mater. 21, 3799–3809 (2009). https://doi.org/10.1021/cm9008943

    Article  CAS  Google Scholar 

  88. Kim, Y., Lee, H., Kang, S.: First-principles and experimental investigation of the morphology of layer-structured LiNiO2 and LiCoO2. J. Mater. Chem. 22, 12874 (2012). https://doi.org/10.1039/c2jm31145c

    Article  CAS  Google Scholar 

  89. Karim, A., Fosse, S., Persson, K.A.: Surface structure and equilibrium particle shape of the LiMn2O4 spinel from first-principles calculations. Phys. Rev. B 87, 075322 (2013). https://doi.org/10.1103/physrevb.87.075322

    Article  Google Scholar 

  90. Hirayama, M., Ido, H., Kim, K., et al.: Dynamic structural changes at LiMn2O4/electrolyte interface during lithium battery reaction. J. Am. Chem. Soc. 132, 15268–15276 (2010). https://doi.org/10.1021/ja105389t

    Article  CAS  PubMed  Google Scholar 

  91. Lee, Y.K., Park, J., Lu, W.: Electronic and bonding properties of LiMn2O4 spinel with different surface orientations and doping elements and their effects on manganese dissolution. J. Electrochem. Soc. 163, A1359–A1368 (2016). https://doi.org/10.1149/2.0991607jes

    Article  CAS  Google Scholar 

  92. Mizushima, K., Jones, P.C., Wiseman, P.J., et al.: LixCoO2 (0<x<−1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 15, 783–789 (1980). https://doi.org/10.1016/0025-5408(80)90012-4

    Article  CAS  Google Scholar 

  93. Amatucci, G.G., Tarascon, J.M., Klein, L.C.: CoO2, the end member of the LixCoO2 solid solution. J. Electrochem. Soc. 143, 1114–1123 (1996). https://doi.org/10.1149/1.1836594

    Article  CAS  Google Scholar 

  94. van der Ven, A., Aydinol, M.K., Ceder, G.: First-principles evidence for stage ordering in LixCoO2. J. Electrochem. Soc. 145, 2149–2155 (1998). https://doi.org/10.1149/1.1838610

    Article  Google Scholar 

  95. Seymour, I.D., Chakraborty, S., Middlemiss, D.S., et al.: Mapping structural changes in electrode materials: application of the hybrid eigenvector-following density functional theory (DFT) method to layered Li0.5MnO2. Chem. Mater. 27, 5550–5561 (2015). Doi https://doi.org/10.1021/acs.chemmater.5b01674

  96. Reed, J., Ceder, G., van der Ven, A.: Layered-to-spinel phase transition in LixMnO2. Electrochem. Solid State Lett. 4, A78 (2001). https://doi.org/10.1149/1.1368896

    Article  CAS  Google Scholar 

  97. Kong, F.T., Liang, C.P., Wang, L.H., et al.: Kinetic stability of bulk LiNiO2 and surface degradation by oxygen evolution in LiNiO2-based cathode materials. Adv. Energy Mater. 9, 1802586 (2019). https://doi.org/10.1002/aenm.201802586

    Article  CAS  Google Scholar 

  98. Wang, L., Maxisch, T., Ceder, G.: Oxidation energies of transition metal oxides within the GGA+U framework. Phys. Rev. B 73, 195107 (2006). https://doi.org/10.1103/physrevb.73.195107

    Article  Google Scholar 

  99. Zheng, J.X., Liu, T.C., Hu, Z.X., et al.: Tuning of thermal stability in layered Li(NixMnyCoz)O2. J. Am. Chem. Soc. 138, 13326–13334 (2016). https://doi.org/10.1021/jacs.6b07771

  100. Zheng, J.X., Teng, G.F., Xin, C., et al.: Role of superexchange interaction on tuning of Ni/Li disordering in layered Li(NixMnyCoz)O2. J. Phys. Chem. Lett. 8, 5537–5542 (2017). https://doi.org/10.1021/acs.jpclett.7b02498

    Article  CAS  PubMed  Google Scholar 

  101. Yamaguchi, H., Yamada, A., Uwe, H.: Jahn-Teller transition of LiMn2O4 studied by X-ray-absorption spectroscopy. Phys. Rev. B 58, 8 (1998). https://doi.org/10.1103/physrevb.58.8

    Article  CAS  Google Scholar 

  102. Nakayama, M., Nogami, M.: A first-principles study on phase transition induced by charge ordering of Mn3+/Mn4+ in spinel LiMn2O4. Solid State Commun. 150, 1329–1333 (2010). https://doi.org/10.1016/j.ssc.2010.05.006

    Article  CAS  Google Scholar 

  103. Choi, D., Kang, J., Park, J., et al.: First-principles study on thermodynamic stability of the hybrid interfacial structure of LiMn2O4 cathode and carbonate electrolyte in Li-ion batteries. Phys. Chem. Chem. Phys. 20, 11592–11597 (2018). https://doi.org/10.1039/c7cp08037a

    Article  CAS  PubMed  Google Scholar 

  104. Rodríguez-Carvajal, J., Rousse, G., Masquelier, C., et al.: Electronic crystallization in a lithium battery material: columnar ordering of electrons and holes in the spinel LiMn2O4. Phys. Rev. Lett. 81, 4660 (1998). https://doi.org/10.1103/physrevlett.81.4660

    Article  Google Scholar 

  105. Singh, G., Gupta, S.L., Prasad, R., et al.: Suppression of Jahn-Teller distortion by chromium and magnesium doping in spinel LiMn2O4: a first-principles study using GGA and GGA+U. J. Phys. Chem. Solids 70, 1200–1206 (2009). https://doi.org/10.1016/j.jpcs.2009.07.001

    Article  CAS  Google Scholar 

  106. Aydinol, M.K., Kohan, A.F., Ceder, G., et al.: Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys. Rev. B 56, 1354 (1997). https://doi.org/10.1103/physrevb.56.1354

    Article  CAS  Google Scholar 

  107. Zhou, F., Cococcioni, M., Marianetti, C.A., et al.: First-principles prediction of redox potentials in transition-metal compounds with LDA+U. Phys. Rev. B 70, 235121 (2004). https://doi.org/10.1103/physrevb.70.235121

    Article  Google Scholar 

  108. Xu, B., Meng, S.: Factors affecting Li mobility in spinel LiMn2O4: a first-principles study by GGA and GGA+U methods. J. Power Sources 195, 4971–4976 (2010). https://doi.org/10.1016/j.jpowsour.2010.02.060

    Article  CAS  Google Scholar 

  109. Kim, J.S., Prakash, J., Selman, J.R.: Thermal characteristics of LixMn2O4 spinel. Electrochem. Solid State Lett. 4, A141 (2001). https://doi.org/10.1149/1.1387224

    Article  CAS  Google Scholar 

  110. Seo, D.H., Urban, A., Ceder, G.: Calibrating transition-metal energy levels and oxygen bands in first-principles calculations: Accurate prediction of redox potentials and charge transfer in lithium transition-metal oxides. Phys. Rev. B 92, 115118 (2015). https://doi.org/10.1103/physrevb.92.115118

    Article  Google Scholar 

  111. Xiao, W.J., Xin, C., Li, S.B., et al.: Insight into fast Li diffusion in Li-excess spinel lithium manganese oxide. J. Mater. Chem. A 6, 9893–9898 (2018). https://doi.org/10.1039/c8ta01428k

    Article  CAS  Google Scholar 

  112. Tateishi, K., du Boulay, D., Ishizawa, N.: The effect of mixed Mn valences on Li migration in LiMn2O4 spinel: A molecular dynamics study. Appl. Phys. Lett. 84, 529–531 (2004). https://doi.org/10.1063/1.1644320

    Article  CAS  Google Scholar 

  113. Moradabadi, A., Kaghazchi, P., Rohrer, J., et al.: Influence of elastic strain on the thermodynamics and kinetics of lithium vacancy in bulk LiCoO2. Phys. Rev. Materials 2, 015402 (2018). https://doi.org/10.1103/physrevmaterials.2.015402

    Article  CAS  Google Scholar 

  114. Ning, F.H., Li, S., Xu, B., et al.: Strain tuned Li diffusion in LiCoO2 material for Li ion batteries: a first principles study. Solid State Ionics 263, 46–48 (2014). https://doi.org/10.1016/j.ssi.2014.05.008

    Article  CAS  Google Scholar 

  115. Lee, J., Pennycook, S.J., Pantelides, S.T.: Simultaneous enhancement of electronic and Li+ ion conductivity in LiFePO4. Appl. Phys. Lett. 101, 033901 (2012). https://doi.org/10.1063/1.4737212

    Article  CAS  Google Scholar 

  116. Zhang, M.J., Teng, G.F., Chen-Wiegart, Y.C.K., et al.: Cationic ordering coupled to reconstruction of basic building units during synthesis of high-Ni layered oxides. J. Am. Chem. Soc. 140, 12484–12492 (2018). https://doi.org/10.1021/jacs.8b06150

    Article  CAS  PubMed  Google Scholar 

  117. Wang, D.W., Xin, C., Zhang, M.J., et al.: Intrinsic role of cationic substitution in tuning Li/Ni mixing in high-Ni layered oxides. Chem. Mater. 31, 2731–2740 (2019). https://doi.org/10.1021/acs.chemmater.8b04673

    Article  CAS  Google Scholar 

  118. Yu, H.J., Qian, Y.M., Otani, M., et al.: Study of the lithium/nickel ions exchange in the layered LiNi0.42Mn0.42Co0.16O2 cathode material for lithium ion batteries: experimental and first-principles calculations. Energy Environ. Sci. 7, 1068–1078 (2014). Doi https://doi.org/10.1039/c3ee42398k

  119. Hinuma, Y., Meng, Y.S., Kang, K., et al.: Phase transitions in the LiNi0.5Mn0.5O2 system with temperature. Chem. Mater. 19, 1790–1800 (2007). Doi https://doi.org/10.1021/cm062903i

  120. Xiao, Y.G., Liu, T.C., Liu, J.J., et al.: Insight into the origin of lithium/nickel ions exchange in layered Li(NixMnyCoz)O2 cathode materials. Nano Energy 49, 77–85 (2018). https://doi.org/10.1016/j.nanoen.2018.04.020

    Article  CAS  Google Scholar 

  121. Xiao, R.J., Li, H., Chen, L.Q.: Density functional investigation on Li2MnO3. Chem. Mater. 24, 4242–4251 (2012). https://doi.org/10.1021/cm3027219

    Article  CAS  Google Scholar 

  122. Shin, Y., Persson, K.A.: Surface morphology and surface stability against oxygen loss of the lithium-excess Li2MnO3 cathode material as a function of lithium concentration. ACS Appl. Mater. Interfaces 8, 25595–25602 (2016). https://doi.org/10.1021/acsami.6b07259

    Article  CAS  PubMed  Google Scholar 

  123. Gent, W.E., Lim, K., Liang, Y.F., et al.: Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nat. Commun. 8, 2091 (2017). https://doi.org/10.1038/s41467-017-02041-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Okamoto, Y.: Ambivalent effect of oxygen vacancies on Li2MnO3: a first-principles study. J. Electrochem. Soc. 159, A152–A157 (2011). https://doi.org/10.1149/2.079202jes

    Article  CAS  Google Scholar 

  125. Cho, E., Kim, K., Jung, C., et al.: Overview of the oxygen behavior in the degradation of Li2MnO3 cathode material. J. Phys. Chem. C 121, 21118–21127 (2017). https://doi.org/10.1021/acs.jpcc.7b04937

    Article  CAS  Google Scholar 

  126. Zhang, P., Wei, S.H.: Origin of charge compensation and its effect on the stability of oxide cathodes for Li-ion batteries: The case of orthosilicates. Electrochim. Acta 270, 409–416 (2018). https://doi.org/10.1016/j.electacta.2018.03.105

    Article  CAS  Google Scholar 

  127. Ohzuku, T., Nagayama, M., Tsuji, K., et al.: High-capacity lithium insertion materials of lithium nickel manganese oxides for advanced lithium-ion batteries: toward rechargeable capacity more than 300 mAh g−1. J. Mater. Chem. 21, 10179–10188 (2011). https://doi.org/10.1039/C0JM04325G

    Article  CAS  Google Scholar 

  128. Sathiya, M., Ramesha, K., Rousse, G., et al.: High performance Li2Ru1−yMnyO3 (0.2 \(\leqslant\) y \(\leqslant\) 0.8) cathode materials for rechargeable lithium-ion batteries: their understanding. Chem. Mater. 25, 1121–1131 (2013). Doi https://doi.org/10.1021/cm400193m

  129. Gent, W.E., Abate, I.I., Yang, W.L., et al.: Design rules for high-valent redox in intercalation electrodes. Joule 4, 1369–1397 (2020). https://doi.org/10.1016/j.joule.2020.05.004

    Article  CAS  Google Scholar 

  130. Radin, M.D., Vinckeviciute, J., Seshadri, R., et al.: Manganese oxidation as the origin of the anomalous capacity of Mn-containing Li-excess cathode materials. Nat. Energy 4, 639–646 (2019). https://doi.org/10.1038/s41560-019-0439-6

    Article  CAS  Google Scholar 

  131. Zhang, Z.H., Zhao, S., Wang, B.Y., et al.: Local redox reaction of high valence manganese in Li2MnO3-based lithium battery cathodes. Cell Rep. Phys. Sci. 1, 100061 (2020). https://doi.org/10.1016/j.xcrp.2020.100061

    Article  Google Scholar 

  132. Lee, J., Urban, A., Li, X., et al.: Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343, 519–522 (2014). https://doi.org/10.1126/science.1246432

    Article  CAS  PubMed  Google Scholar 

  133. Ji, H., Urban, A., Kitchaev, D.A., et al.: Hidden structural and chemical order controls lithium transport in cation-disordered oxides for rechargeable batteries. Nat. Commun. 10, 592 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhao, E.Y., Li, Q.H., Meng, F.Q., et al.: Stabilizing the oxygen lattice and reversible oxygen redox chemistry through structural dimensionality in lithium-rich cathode oxides. Angew. Chem. Int. Ed. 58, 4323–4327 (2019). https://doi.org/10.1002/anie.201900444

    Article  CAS  Google Scholar 

  135. Shin, Y., Ding, H., Persson, K.A.: Revealing the intrinsic Li mobility in the Li2MnO3 lithium-excess material. Chem. Mater. 28, 2081–2088 (2016). https://doi.org/10.1021/acs.chemmater.5b04862

    Article  CAS  Google Scholar 

  136. Kong, F.T., Longo, R.C., Park, M.S., et al.: Ab initio study of doping effects on LiMnO2 and Li2MnO3 cathode materials for Li-ion batteries. J. Mater. Chem. A 3, 8489–8500 (2015). https://doi.org/10.1039/c5ta01445j

    Article  CAS  Google Scholar 

  137. Yu, H., Kim, H., Wang, Y., et al.: High-energy “composite” layered manganese-rich cathode materials via controlling Li2MnO3 phase activation for lithium-ion batteries. Phys. Chem. Chem. Phys. 14, 6584–6595 (2012)

    Article  PubMed  Google Scholar 

  138. Gao, Y.R., Ma, J., Wang, X.F., et al.: Improved electron/Li-ion transport and oxygen stability of Mo-doped Li2MnO3. J. Mater. Chem. A 2, 4811 (2014). https://doi.org/10.1039/c3ta15236g

    Article  CAS  Google Scholar 

  139. Gao, Y.R., Wang, X.F., Ma, J., et al.: Selecting substituent elements for Li-rich Mn-based cathode materials by density functional theory (DFT) calculations. Chem. Mater. 27, 3456–3461 (2015). https://doi.org/10.1021/acs.chemmater.5b00875

    Article  CAS  Google Scholar 

  140. Wang, C.C., Manthiram, A.: Influence of cationic substitutions on the first charge and reversible capacities of lithium-rich layered oxide cathodes. J. Mater. Chem. A 1, 10209 (2013). https://doi.org/10.1039/c3ta11703k

    Article  CAS  Google Scholar 

  141. Yan, H.J., Li, B., Yu, Z., et al.: First-principles study: tuning the redox behavior of lithium-rich layered oxides by chlorine doping. J. Phys. Chem. C 121, 7155–7163 (2017). https://doi.org/10.1021/acs.jpcc.7b01168

    Article  CAS  Google Scholar 

  142. Yang, J.L., Zheng, J.X., Kang, X.C., et al.: Tuning structural stability and lithium-storage properties by d-orbital hybridization substitution in full tetrahedron Li2FeSiO4 nanocrystal. Nano Energy 20, 117–125 (2016). https://doi.org/10.1016/j.nanoen.2015.12.004

    Article  CAS  Google Scholar 

  143. Islam, M.M., Bredow, T.: Density functional theory study for the stability and ionic conductivity of Li2O surfaces. J. Phys. Chem. C 113, 672–676 (2009). https://doi.org/10.1021/jp807048p

    Article  CAS  Google Scholar 

  144. Islam, M.M., Bredow, T., Minot, C.: Theoretical analysis of structural, energetic, electronic, and defect properties of Li2O. J. Phys. Chem. B 110, 9413–9420 (2006). https://doi.org/10.1021/jp0566764

    Article  CAS  PubMed  Google Scholar 

  145. Seriani, N.: Ab initio thermodynamics of lithium oxides: from bulk phases to nanoparticles. Nanotechnology 20, 445703 (2009). https://doi.org/10.1088/0957-4484/20/44/445703

    Article  CAS  PubMed  Google Scholar 

  146. Radin, M.D., Rodriguez, J.F., Tian, F., et al.: Lithium peroxide surfaces are metallic, while lithium oxide surfaces are not. J. Am. Chem. Soc. 134, 1093–1103 (2012). https://doi.org/10.1021/ja208944x

    Article  CAS  PubMed  Google Scholar 

  147. Yang, C.Y., Chen, J., Ji, X., et al.: Aqueous Li-ion battery enabled by halogen conversion–intercalation chemistry in graphite. Nature 569, 245–250 (2019). https://doi.org/10.1038/s41586-019-1175-6

    Article  CAS  PubMed  Google Scholar 

  148. Yu, H.J., Wang, Y.R., Asakura, D., et al.: Electrochemical kinetics of the 0.5Li2MnO3·0.5LiMn0.42Ni0.42Co0.16O2 “composite” layered cathode material for lithium-ion batteries. RSC Adv. 2, 8797 (2012). Doi https://doi.org/10.1039/c2ra20772a

  149. Zhang, X., Yu, H.J.: Crystalline domain battery materials. Acc. Chem. Res. 53, 368–379 (2020). https://doi.org/10.1021/acs.accounts.9b00457

    Article  CAS  PubMed  Google Scholar 

  150. Yu, H.J., Ishikawa, R., So, Y.G., et al.: Direct atomic-resolution observation of two phases in the Li1.2Mn0.567Ni0.166Co0.067O2 cathode material for lithium-ion batteries. Angew. Chem. Int. Ed. 52, 5969–5973 (2013). Doi https://doi.org/10.1002/anie.201301236

  151. Yu, H.J., So, Y.G., Ren, Y., et al.: Temperature-sensitive structure evolution of lithium-manganese-rich layered oxides for lithium-ion batteries. J. Am. Chem. Soc. 140, 15279–15289 (2018). https://doi.org/10.1021/jacs.8b07858

    Article  CAS  PubMed  Google Scholar 

  152. Wei, Y., Zheng, J.X., Cui, S.H., et al.: Kinetics tuning of Li-ion diffusion in layered Li(NixMnyCoz)O2. J. Am. Chem. Soc. 137, 8364–8367 (2015). https://doi.org/10.1021/jacs.5b04040

    Article  CAS  PubMed  Google Scholar 

  153. Urban, A., Matts, I., Abdellahi, A., et al.: Computational design and preparation of cation-disordered oxides for high-energy-density Li-ion batteries. Adv. Energy Mater. 6, 1600488 (2016). https://doi.org/10.1002/aenm.201600488

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Beijing Natural Science Foundation (JQ19003, KZ202010005007 KZ201910005002) and the National Natural Science Foundation of China (U19A2018, 21875007, 51802009 and 22075007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijun Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Wang, B., Zhang, Z. et al. First-principles computational insights into lithium battery cathode materials. Electrochem. Energy Rev. 5, 1–31 (2022). https://doi.org/10.1007/s41918-021-00115-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-021-00115-5

Keywords

Navigation