Skip to main content

Advertisement

Log in

Recent Progress and Design Principles for Rechargeable Lithium Organic Batteries

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

The most commonly used electrode materials in lithium organic batteries (LOBs) are redox-active organic materials, which have the advantages of low cost, environmental safety, and adjustable structures. Although the use of organic materials as electrodes in LOBs has been reported, these materials have not attained the same recognition as inorganic electrode materials, mainly due to their slight electronic conductivity and possible solubility in organic electrolytes, resulting in a low reversible capacity. However, over the past 10 years, organic materials have achieved outstanding results when used as battery electrodes, and an increasing number of researchers have realized their significance. This review summarizes the recent progress in organic electrodes for use in rechargeable LOBs. By classifying Li-storage mechanisms with various functional organic groups and designing molecules for next-generation advanced lithium organic systems, we attempt to analyze the working principle and the effect of various organic functionalities on electrochemical performance, to reveal the advantages and disadvantages of various organic molecules and to propose possible design principles and development trends for future LOBs. In addition, we highlight the recently reported two-dimensional covalent organic framework that is unique in its extensive π conjugated structure and Li-storage mechanisms based on benzene and N-containing rings; this framework is considered to be the most promising alternative to metal-based electrode materials with comparable large reversible capacities and long cycle lives.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Copyright © 2016, Wiley–VCH

Fig. 4

Copyright © 2017, Wiley–VCH

Fig. 5

Copyright © 2015, Wiley–VCH

Fig. 6

Copyright © 2015, Wiley–VCH

Fig. 7

Copyright © 2018, Nature Group

Fig. 8

Copyright © 2018, Wiley–VCH

Fig. 9

Copyright © 2020, American Chemical Society

Fig. 10

Copyright © 2018, Wiley–VCH

Fig. 11

Similar content being viewed by others

References

  1. Li, S., Cheng, C., Thomas, A.: Carbon-based microbial-fuel-cell electrodes: from conductive supports to active catalysts. Adv. Mater. 29, 1602547 (2017). https://doi.org/10.1002/adma.201602547

    Article  CAS  Google Scholar 

  2. Singh, R., Polu, A.R., Bhattacharya, B., et al.: Perspectives for solid biopolymer electrolytes in dye sensitized solar cell and battery application. Renew. Sustain. Energy Rev. 65, 1098–1117 (2016). https://doi.org/10.1016/j.rser.2016.06.026

    Article  CAS  Google Scholar 

  3. Chen, X.D., Zhang, H., Ci, C.G., et al.: Few-layered boronic ester based covalent organic frameworks/carbon nanotube composites for high-performance K-organic batteries. ACS Nano 13, 3600–3607 (2019). https://doi.org/10.1021/acsnano.9b00165

    Article  CAS  Google Scholar 

  4. Chen, X.D., Xu, Y.J., Du, F.H., et al.: Covalent organic framework derived boron/oxygen codoped porous carbon on CNTs as an efficient sulfur host for lithium-sulfur batteries. Small Methods 3, 1900338 (2019). https://doi.org/10.1002/smtd.201900338

    Article  CAS  Google Scholar 

  5. Choi, J.W., Aurbach, D.: Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016). https://doi.org/10.1038/natrevmats.2016.13

    Article  CAS  Google Scholar 

  6. Wang, J., He, X., Paillard, E., et al.: Lithium- and manganese-rich oxide cathode materials for high-energy lithium ion batteries. Adv. Energy Mater. 6, 1600906 (2016). https://doi.org/10.1002/aenm.201600906

    Article  CAS  Google Scholar 

  7. Li, W., Song, B., Manthiram, A.: High-voltage positive electrode materials for lithium-ion batteries. Chem. Soc. Rev. 46, 3006–3059 (2017). https://doi.org/10.1039/c6cs00875e

    Article  CAS  Google Scholar 

  8. Zheng, J.M., Myeong, S., Cho, W., et al.: Li- and Mn-rich cathode materials: challenges to commercialization. Adv. Energy Mater. 7, 1601284 (2017). https://doi.org/10.1002/aenm.201601284

    Article  CAS  Google Scholar 

  9. Zhao, Y., Wang, L.P., Sougrati, M.T., et al.: A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance Li and Na ion battery anodes. Adv. Energy Mater. 7, 1601424 (2017). https://doi.org/10.1002/aenm.201601424

    Article  CAS  Google Scholar 

  10. Gu, Y., Wu, F.D., Wang, Y.: Confined volume change in Sn-Co-C ternary tube-in-tube composites for high-capacity and long-life lithium storage. Adv. Funct. Mater. 23, 893–899 (2013). https://doi.org/10.1002/adfm.201202136

    Article  CAS  Google Scholar 

  11. Zou, Y., Wang, Y.: Sn@CNT nanostructures rooted in graphene with high and fast Li-storage capacities. ACS Nano 5, 8108–8114 (2011). https://doi.org/10.1021/nn2027159

    Article  CAS  Google Scholar 

  12. Keppeler, M., Shen, N., Nageswaran, S., et al.: Synthesis of α-Fe2O3/carbon nanocomposites as high capacity electrodes for next generation lithium ion batteries: a review. J. Mater. Chem. A 4, 18223–18239 (2016). https://doi.org/10.1039/c6ta08456g

    Article  CAS  Google Scholar 

  13. Hu, X.S., Li, C., Lou, X.B., et al.: Hierarchical CuO octahedra inherited from copper metal-organic frameworks: high-rate and high-capacity lithium-ion storage materials stimulated by pseudocapacitance. J. Mater. Chem. A 5, 12828–12837 (2017). https://doi.org/10.1039/c7ta02953e

    Article  CAS  Google Scholar 

  14. Jiang, T., Bu, F., Feng, X., et al.: Porous Fe2O3 nanoframeworks encapsulated within three-dimensional graphene as high-performance flexible anode for lithium-ion battery. ACS Nano 11, 5140–5147 (2017). https://doi.org/10.1021/acsnano.7b02198

    Article  CAS  Google Scholar 

  15. Dong, S., Li, C., Ge, X., et al.: ZnS-Sb2S3@C core-double shell polyhedron structure derived from metal-organic framework as anodes for high performance sodium ion batteries. ACS Nano 11, 6474–6482 (2017). https://doi.org/10.1021/acsnano.7b03321

    Article  CAS  Google Scholar 

  16. Li, H., Su, Y., Sun, W.W., et al.: Carbon nanotubes rooted in porous ternary metal sulfide@N/S-doped carbon dodecahedron: bimetal-organic-frameworks derivation and electrochemical application for high-capacity and long-life lithium-ion batteries. Adv. Funct. Mater. 26, 8345–8353 (2016). https://doi.org/10.1002/adfm.201601631

    Article  CAS  Google Scholar 

  17. Xia, G.L., Su, J.W., Li, M.S., et al.: A MOF-derived self-template strategy toward cobalt phosphide electrodes with ultralong cycle life and high capacity. J. Mater. Chem. A 5, 10321–10327 (2017). https://doi.org/10.1039/c7ta02600e

    Article  CAS  Google Scholar 

  18. Lou, P., Cui, Z., Jia, Z., et al.: Monodispersed carbon-coated cubic NiP2 nanoparticles anchored on carbon nanotubes as ultra-long-life anodes for reversible lithium storage. ACS Nano 11, 3705–3715 (2017). https://doi.org/10.1021/acsnano.6b08223

    Article  CAS  Google Scholar 

  19. Wang, X.F., Kong, D.Z., Huang, Z.X., et al.: Nontopotactic reaction in highly reversible sodium storage of ultrathin Co9Se8/rGO hybrid nanosheets. Small 13, 1603980 (2017). https://doi.org/10.1002/smll.201603980

    Article  CAS  Google Scholar 

  20. Chen, X.D., Lv, L.P., Sun, W.W., et al.: Ultrasmall MoC nanoparticles embedded in 3D frameworks of nitrogen-doped porous carbon as anode materials for efficient lithium storage with pseudocapacitance. J. Mater. Chem. A 6, 13705–13716 (2018). https://doi.org/10.1039/c8ta03176b

    Article  CAS  Google Scholar 

  21. Huang, H., Gao, S., Wu, A.M., et al.: Fe3N constrained inside C nanocages as an anode for Li-ion batteries through post-synthesis nitridation. Nano Energy 31, 74–83 (2017). https://doi.org/10.1016/j.nanoen.2016.10.059

    Article  CAS  Google Scholar 

  22. Rahman, M.A., Song, G.S., Bhatt, A.I., et al.: Nanostructured silicon anodes for high-performance lithium-ion batteries. Adv. Funct. Mater. 26, 647–678 (2016). https://doi.org/10.1002/adfm.201502959

    Article  CAS  Google Scholar 

  23. Choi, S., Kwon, T.W., Coskun, A., et al.: Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 357, 279–283 (2017). https://doi.org/10.1126/science.aal4373

    Article  CAS  Google Scholar 

  24. Du, F.H., Wang, K.X., Chen, J.S.: Strategies to succeed in improving the lithium-ion storage properties of silicon nanomaterials. J. Mater. Chem. A 4, 32–50 (2016). https://doi.org/10.1039/c5ta06962a

    Article  CAS  Google Scholar 

  25. Zhou, L., Zhuang, Z.C., Zhao, H.H., et al.: Intricate hollow structures: controlled synthesis and applications in energy storage and conversion. Adv. Mater. 29, 1602914 (2017). https://doi.org/10.1002/adma.201602914

    Article  CAS  Google Scholar 

  26. Guo, W.X., Sun, W.W., Wang, Y.: Multilayer CuO@NiO hollow spheres: microwave-assisted metal-organic-framework derivation and highly reversible structure-matched stepwise lithium storage. ACS Nano 9, 11462–11471 (2015). https://doi.org/10.1021/acsnano.5b05610

    Article  CAS  Google Scholar 

  27. Zhang, K., Li, P., Ma, M., et al.: Core-shelled low-oxidation state oxides@reduced graphene oxides cubes via pressurized reduction for highly stable lithium ion storage. Adv. Funct. Mater. 26, 2959–2965 (2016). https://doi.org/10.1149/ma2016-02/3/377

    Article  CAS  Google Scholar 

  28. Tan, G.Q., Wu, F., Yuan, Y.F., et al.: Freestanding three-dimensional core–shell nanoarrays for lithium-ion battery anodes. Nat. Commun. 7, 11774 (2016). https://doi.org/10.1038/ncomms11774

    Article  CAS  Google Scholar 

  29. Ma, L.B., Yan, P.J., Wu, S.K., et al.: Engineering tin phosphides@carbon yolk–shell nanocube structures as a highly stable anode material for sodium-ion batteries. J. Mater. Chem. A 5, 16994–17000 (2017). https://doi.org/10.1039/c7ta04900e

    Article  CAS  Google Scholar 

  30. Zhang, M., Liu, E.Z., Cao, T.T., et al.: Sandwiched graphene inserted with graphene-encapsulated yolk–shell γ-Fe2O3 nanoparticles for efficient lithium ion storage. J. Mater. Chem. A 5, 7035–7042 (2017). https://doi.org/10.1039/c7ta01239j

    Article  CAS  Google Scholar 

  31. Nevers, D.R., Brushett, F.R., Wheeler, D.R.: Engineering radical polymer electrodes for electrochemical energy storage. J. Power Sources 352, 226–244 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.077

    Article  CAS  Google Scholar 

  32. Flamme, B., Rodriguez Garcia, G., Weil, M., et al.: Guidelines to design organic electrolytes for lithium-ion batteries: environmental impact, physicochemical and electrochemical properties. Green Chem. 19, 1828–1849 (2017). https://doi.org/10.1039/c7gc00252a

    Article  CAS  Google Scholar 

  33. Xie, J., Gu, P.Y., Zhang, Q.C.: Nanostructured conjugated polymers: toward high-performance organic electrodes for rechargeable batteries. ACS Energy Lett. 2, 1985–1996 (2017). https://doi.org/10.1021/acsenergylett.7b00494

    Article  CAS  Google Scholar 

  34. Liang, Y.L., Tao, Z.L., Chen, J.: Organic electrode materials for rechargeable lithium batteries. Adv. Energy Mater. 2, 742–769 (2012). https://doi.org/10.1002/aenm.201100795

    Article  CAS  Google Scholar 

  35. Muench, S., Wild, A., Friebe, C., et al.: Polymer-based organic batteries. Chem. Rev. 116, 9438–9484 (2016). https://doi.org/10.1021/acs.chemrev.6b00070

    Article  CAS  Google Scholar 

  36. Häupler, B., Wild, A., Schubert, U.S.: Carbonyls: powerful organic materials for secondary batteries. Adv. Energy Mater. 5, 1402034 (2015). https://doi.org/10.1002/aenm.201402034

    Article  CAS  Google Scholar 

  37. Williams, D.L., Byrne, J.J., Driscoll, J.S.: A high energy density lithium/dichloroisocyanuric acid battery system. J. Electrochem. Soc. 116, 2 (1969). https://doi.org/10.1149/1.2411755

    Article  CAS  Google Scholar 

  38. Wu, Y.W., Zeng, R.H., Nan, J.M., et al.: Quinone electrode materials for rechargeable lithium/sodium ion batteries. Adv. Energy Mater. 7, 1700278 (2017). https://doi.org/10.1002/aenm.201700278

    Article  CAS  Google Scholar 

  39. Xie, J., Zhang, Q.C.: Recent progress in rechargeable lithium batteries with organic materials as promising electrodes. J. Mater. Chem. A 4, 7091–7106 (2016). https://doi.org/10.1039/c6ta01069e

    Article  CAS  Google Scholar 

  40. Zhao, Q., Guo, C.Y., Lu, Y., et al.: Rechargeable lithium batteries with electrodes of small organic carbonyl salts and advanced electrolytes. Ind. Eng. Chem. Res. 55, 5795–5804 (2016). https://doi.org/10.1021/acs.iecr.6b01462

    Article  CAS  Google Scholar 

  41. Zhu, Z.Q., Chen, J.: Review: advanced carbon-supported organic electrode materials for lithium (sodium)-ion batteries. J. Electrochem. Soc. 162, A2393–A2405 (2015). https://doi.org/10.1149/2.0031514jes

    Article  CAS  Google Scholar 

  42. Zhong, Y.R., Yang, M., Zhou, X.L., et al.: Structural design for anodes of lithium-ion batteries: emerging horizons from materials to electrodes. Mater. Horiz. 2, 553–566 (2015). https://doi.org/10.1039/c5mh00136f

    Article  CAS  Google Scholar 

  43. Bresser, D., Passerini, S., Scrosati, B.: Leveraging valuable synergies by combining alloying and conversion for lithium-ion anodes. Energy Environ. Sci. 9, 3348–3367 (2016). https://doi.org/10.1039/c6ee02346k

    Article  CAS  Google Scholar 

  44. Song, Z.P., Zhou, H.S.: Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. Energy Environ. Sci. 6, 2280–2301 (2013). https://doi.org/10.1039/c3ee40709h

    Article  CAS  Google Scholar 

  45. Miroshnikov, M., Divya, K.P., Babu, G., et al.: Power from nature: designing green battery materials from electroactive quinone derivatives and organic polymers. J. Mater. Chem. A 4, 12370–12386 (2016). https://doi.org/10.1039/c6ta03166h

    Article  CAS  Google Scholar 

  46. Janoschka, T., Hager, M.D., Schubert, U.S.: Powering up the future: radical polymers for battery applications. Adv. Mater. 24, 6397–6409 (2012). https://doi.org/10.1002/adma.201203119

    Article  CAS  Google Scholar 

  47. Zhang, Y.G., Wang, J.Q., Riduan, S.N.: Strategies toward improving the performance of organic electrodes in rechargeable lithium (sodium) batteries. J. Mater. Chem. A 4, 14902–14914 (2016). https://doi.org/10.1039/c6ta05231b

    Article  CAS  Google Scholar 

  48. Schon, T.B., McAllister, B.T., Li, P.F., et al.: The rise of organic electrode materials for energy storage. Chem. Soc. Rev. 45, 6345–6404 (2016). https://doi.org/10.1039/c6cs00173d

    Article  CAS  Google Scholar 

  49. Lu, Y., Zhang, Q., Li, L., et al.: Design strategies toward enhancing the performance of organic electrode materials in metal-ion batteries. Chem 4, 2786–2813 (2018). https://doi.org/10.1016/j.chempr.2018.09.005

    Article  CAS  Google Scholar 

  50. Lu, Y., Chen, J.: Prospects of organic electrode materials for practical lithium batteries. Nat. Rev. Chem. 4, 127–142 (2020). https://doi.org/10.1038/s41570-020-0160-9

    Article  CAS  Google Scholar 

  51. Wang, Y., Deng, Y.H., Qu, Q.T., et al.: Ultrahigh-capacity organic anode with high-rate capability and long cycle life for lithium-ion batteries. ACS Energy Lett. 2, 2140–2148 (2017). https://doi.org/10.1021/acsenergylett.7b00622

    Article  CAS  Google Scholar 

  52. Chen, L., Liu, S.H., Zhao, L., et al.: OH-substituted 2,3-dichloro-5,6-dicyano-1,4-benzoquinone as highly stable organic electrode for lithium ion battery. Electrochim. Acta 258, 677–683 (2017). https://doi.org/10.1016/j.electacta.2017.11.113

    Article  CAS  Google Scholar 

  53. Chen, D.Y., Avestro, A.J., Chen, Z.H., et al.: A rigid naphthalenediimide triangle for organic rechargeable lithium-ion batteries. Adv. Mater. 27, 2907–2912 (2015). https://doi.org/10.1002/adma.201405416

    Article  CAS  Google Scholar 

  54. Kim, D.J., Hermann, K.R., Prokofjevs, A., et al.: Redox-active macrocycles for organic rechargeable batteries. J. Am. Chem. Soc. 139, 6635–6643 (2017). https://doi.org/10.1021/jacs.7b01209

    Article  CAS  Google Scholar 

  55. Wu, D.H., Xie, Z.J., Zhou, Z., et al.: Designing high-voltage carbonyl-containing polycyclic aromatic hydrocarbon cathode materials for Li-ion batteries guided by Clar’s theory. J. Mater. Chem. A 3, 19137–19143 (2015). https://doi.org/10.1039/c5ta05437k

    Article  CAS  Google Scholar 

  56. Iordache, A., Maurel, V., Mouesca, J.M., et al.: Monothioanthraquinone as an organic active material for greener lithium batteries. J. Power Sources 267, 553–559 (2014). https://doi.org/10.1016/j.jpowsour.2014.05.050

    Article  CAS  Google Scholar 

  57. Liang, Y.L., Zhang, P., Yang, S.Q., et al.: Fused heteroaromatic organic compounds for high-power electrodes of rechargeable lithium batteries. Adv. Energy Mater. 3, 600–605 (2013). https://doi.org/10.1002/aenm.201200947

    Article  CAS  Google Scholar 

  58. Yokoji, T., Matsubara, H., Satoh, M.: Rechargeable organic lithium-ion batteries using electron-deficient benzoquinones as positive-electrode materials with high discharge voltages. J. Mater. Chem. A 2, 19347–19354 (2014). https://doi.org/10.1039/c4ta02812k

    Article  CAS  Google Scholar 

  59. Chen, J., Zhang, Q., Zeng, M., et al.: Carboxyl-conjugated phthalocyanines used as novel electrode materials with high specific capacity for lithium-ion batteries. J. Solid State Electrochem. 20, 1285–1294 (2016). https://doi.org/10.1007/s10008-016-3126-6

    Article  CAS  Google Scholar 

  60. Zeng, R.H., Xing, L.D., Qiu, Y.C., et al.: Polycarbonyl(quinonyl) organic compounds as cathode materials for sustainable lithium ion batteries. Electrochim. Acta 146, 447–454 (2014). https://doi.org/10.1016/j.electacta.2014.09.082

    Article  CAS  Google Scholar 

  61. Yokoji, T., Kameyama, Y., Sakaida, S., et al.: Steric effects on the cyclability of benzoquinone-type organic cathode active materials for rechargeable batteries. Chem. Lett. 44, 1726–1728 (2015). https://doi.org/10.1246/cl.150836

    Article  CAS  Google Scholar 

  62. Kim, D.J., Je, S.H., Sampath, S., et al.: Effect of N-substitution in naphthalenediimides on the electrochemical performance of organic rechargeable batteries. RSC Adv. 2, 7968–7970 (2012). https://doi.org/10.1039/c2ra21239k

    Article  CAS  Google Scholar 

  63. Yao, M., Ando, H., Kiyobayashi, T.: Polycyclic quinone fused by a sulfur-containing ring as an organic positive-electrode material for use in rechargeable lithium batteries. Energy Procedia 89, 222–230 (2016). https://doi.org/10.1016/j.egypro.2016.05.029

    Article  CAS  Google Scholar 

  64. Yokoji, T., Kameyama, Y., Maruyama, N., et al.: High-capacity organic cathode active materials of 2,2′-bis-p-benzoquinone derivatives for rechargeable batteries. J. Mater. Chem. A 4, 5457–5466 (2016). https://doi.org/10.1039/c5ta10713j

    Article  CAS  Google Scholar 

  65. Zhang, Y.S., Murtaza, I., Liu, D., et al.: Understanding the mechanism of improvement in practical specific capacity using halogen substituted anthraquinones as cathode materials in lithium batteries. Electrochim. Acta 224, 622–627 (2017). https://doi.org/10.1016/j.electacta.2016.12.065

    Article  CAS  Google Scholar 

  66. Ma, T., Zhao, Q., Wang, J.B., et al.: A sulfur heterocyclic quinone cathode and a multifunctional binder for a high-performance rechargeable lithium-ion battery. Angew. Chem. Int. Ed. 55, 6428–6432 (2016). https://doi.org/10.1002/anie.201601119

    Article  CAS  Google Scholar 

  67. Wang, J., Wang, X.M., Li, H.F., et al.: Intrinsic factors attenuate the performance of anhydride organic cathode materials of lithium battery. J. Electroanal. Chem. 773, 22–26 (2016). https://doi.org/10.1016/j.jelechem.2016.04.038

    Article  CAS  Google Scholar 

  68. Lee, J., Park, M.J.: Tattooing dye as a green electrode material for lithium batteries. Adv. Energy Mater. 7, 1602279 (2017). https://doi.org/10.1002/aenm.201602279

    Article  CAS  Google Scholar 

  69. Bhosale, M.E., Krishnamoorthy, K.: Chemically reduced organic small-molecule-based lithium battery with improved efficiency. Chem. Mater. 27, 2121–2126 (2015). https://doi.org/10.1021/cm5046786

    Article  CAS  Google Scholar 

  70. Lee, M., Hong, J., Kim, H., et al.: Organic nanohybrids for fast and sustainable energy storage. Adv. Mater. 26, 2558–2565 (2014). https://doi.org/10.1002/adma.201305005

    Article  CAS  Google Scholar 

  71. Li, H., Duan, W.C., Zhao, Q., et al.: 2,2′-Bis(3-hydroxy-1,4-naphthoquinone)/CMK-3 nanocomposite as cathode material for lithium-ion batteries. Inorg. Chem. Front. 1, 193–199 (2014). https://doi.org/10.1039/c3qi00076a

    Article  CAS  Google Scholar 

  72. Cui, D.M., Tian, D., Chen, S.S., et al.: Graphene wrapped 3,4,9,10-perylenetetracarboxylic dianhydride as a high-performance organic cathode for lithium ion batteries. J. Mater. Chem. A 4, 9177–9183 (2016). https://doi.org/10.1039/c6ta02880b

    Article  CAS  Google Scholar 

  73. Ai, W., Zhou, W.W., Du, Z.Z., et al.: Toward high energy organic cathodes for Li-ion batteries: a case study of vat dye/graphene composites. Adv. Funct. Mater. 27, 1603603 (2017). https://doi.org/10.1002/adfm.201603603

    Article  CAS  Google Scholar 

  74. Zhang, G.F., Xu, Z.X., Liu, P., et al.: A facile in situ polymerization strategy towards polyimide/carbon black composites as high performance lithium ion battery cathodes. Electrochim. Acta 260, 598–605 (2018). https://doi.org/10.1016/j.electacta.2017.12.075

    Article  CAS  Google Scholar 

  75. Wang, Y., Zheng, X.Y., Qu, Q.T., et al.: A novel maleic acid/graphite composite anode for lithium ion batteries with high energy and power density. Carbon 132, 420–429 (2018). https://doi.org/10.1016/j.carbon.2018.02.043

    Article  CAS  Google Scholar 

  76. Zou, Q.L., Wang, W.K., Wang, A.B., et al.: Preparation of the tetrahydro-hexaquinone as a novel cathode material for rechargeable lithium batteries. Mater. Lett. 117, 290–293 (2014). https://doi.org/10.1016/j.matlet.2013.12.027

    Article  CAS  Google Scholar 

  77. Liang, Y.L., Zhang, P., Chen, J.: Function-oriented design of conjugated carbonyl compound electrodes for high energy lithium batteries. Chem. Sci. 4, 1330–1337 (2013). https://doi.org/10.1039/c3sc22093a

    Article  CAS  Google Scholar 

  78. Xie, J., Chen, W.Q., Wang, Z.L., et al.: Synthesis and exploration of ladder-structured large aromatic dianhydrides as organic cathodes for rechargeable lithium-ion batteries. Chem. Asian J. 12, 868–876 (2017). https://doi.org/10.1002/asia.201700070

    Article  CAS  Google Scholar 

  79. Goriparti, S., Harish, M.N.K., Sampath, S.: Ellagic acid: a novel organic electrode material for high capacity lithium ion batteries. Chem. Commun. 49, 7234–7236 (2013). https://doi.org/10.1039/c3cc43194k

    Article  CAS  Google Scholar 

  80. Deng, Q.J., Xue, J., Zou, W., et al.: The electrochemical behaviors of Li2C8H4O6 and its corresponding organic acid C8H6O6 as anodes for Li-ion batteries. J. Electroanal. Chem. 761, 74–79 (2016). https://doi.org/10.1016/j.jelechem.2015.12.005

    Article  CAS  Google Scholar 

  81. Zhu, H., Yin, J., Zhao, X., et al.: Humic acid as promising organic anodes for lithium/sodium ion batteries. Chem. Commun. 51, 14708–14711 (2015). https://doi.org/10.1039/c5cc04772b

    Article  CAS  Google Scholar 

  82. Luo, Z.Q., Liu, L.J., Zhao, Q., et al.: An insoluble benzoquinone-based organic cathode for use in rechargeable lithium-ion batteries. Angew. Chem. Int. Ed. 56, 12561–12565 (2017). https://doi.org/10.1002/anie.201706604

    Article  CAS  Google Scholar 

  83. Sieuw, L., Jouhara, A., Quarez, É., et al.: A H-bond stabilized quinone electrode material for Li-organic batteries: the strength of weak bonds. Chem. Sci. 10, 418–426 (2019). https://doi.org/10.1039/c8sc02995d

    Article  CAS  Google Scholar 

  84. Yao, M., Numoto, T., Araki, M., et al.: Long cycle-life organic electrode material based on an ionic naphthoquinone derivative for rechargeable batteries. Energy Procedia 56, 228–236 (2014). https://doi.org/10.1016/j.egypro.2014.07.153

    Article  CAS  Google Scholar 

  85. Veerababu, M., Kothandaraman, R.: Rational functionalization of perylene diimide for stable capacity and long-term cycling performance for Li-ion batteries. Electrochim. Acta 232, 244–253 (2017). https://doi.org/10.1016/j.electacta.2017.02.152

    Article  CAS  Google Scholar 

  86. Veerababu, M., Varadaraju, U.V., Kothandaraman, R.: Improved electrochemical performance of lithium/sodium perylene-3,4,9,10-tetracarboxylate as an anode material for secondary rechargeable batteries. Int. J. Hydrog. Energy 40, 14925–14931 (2015). https://doi.org/10.1016/j.ijhydene.2015.09.001

    Article  CAS  Google Scholar 

  87. Han, X.Y., Yi, F., Sun, T.L., et al.: Synthesis and electrochemical performance of Li and Ni 1,4,5,8-naphthalenetetracarboxylates as anodes for Li-ion batteries. Electrochem. Commun. 25, 136–139 (2012). https://doi.org/10.1016/j.elecom.2012.09.014

    Article  CAS  Google Scholar 

  88. Medabalmi, V., Wang, G.X., Ramani, V.K., et al.: Lithium salt of biphenyl tetracarboxylate as an anode material for Li/Na-ion batteries. Appl. Surf. Sci. 418, 9–16 (2017). https://doi.org/10.1016/j.apsusc.2016.12.041

    Article  CAS  Google Scholar 

  89. Cahyadi, H.S., William, W., Verma, D., et al.: Enhanced lithium storage capacity of a tetralithium 1,2,4,5-benzenetetracarboxylate (Li4C10H2O8) salt through crystal structure transformation. ACS Appl. Mater. Interfaces 10, 17183–17194 (2018). https://doi.org/10.1021/acsami.8b03323

    Article  CAS  Google Scholar 

  90. Lee, H.H., Park, Y., Shin, K.H., et al.: Abnormal excess capacity of conjugated dicarboxylates in lithium-ion batteries. ACS Appl. Mater. Interfaces 6, 19118–19126 (2014). https://doi.org/10.1021/am505090p

    Article  CAS  Google Scholar 

  91. Veerababu, M., Varadaraju, U.V., Kothandaraman, R.: Reversible lithium storage behaviour of aromatic diimide dilithium carboxylates. Electrochim. Acta 193, 80–87 (2016). https://doi.org/10.1016/j.electacta.2016.02.030

    Article  CAS  Google Scholar 

  92. Lakraychi, A.E., Dolhem, F., Djedaïni-Pilard, F., et al.: Decreasing redox voltage of terephthalate-based electrode material for Li-ion battery using substituent effect. J. Power Sources 359, 198–204 (2017). https://doi.org/10.1016/j.jpowsour.2017.05.046

    Article  CAS  Google Scholar 

  93. Fédèle, L., Sauvage, F., Gottis, S., et al.: 2D-layered lithium carboxylate based on biphenyl core as negative electrode for organic lithium-ion batteries. Chem. Mater. 29, 546–554 (2017). https://doi.org/10.1021/acs.chemmater.6b03524

    Article  CAS  Google Scholar 

  94. Gou, L., Zhang, H.X., Fan, X.Y., et al.: Lithium based coordination polymer as anode for Li-ion battery. Inorg. Chim. Acta 394, 10–14 (2013). https://doi.org/10.1016/j.ica.2012.07.024

    Article  CAS  Google Scholar 

  95. Rajshekar Shetty, V., Gurukar, S.S., Marriappa, R., et al.: Novel synthetic approach for 1,4-dihydroxyanthraquinone and the development of its lithiated salts as anode materials for aqueous rechargeable lithium-ion batteries. New J. Chem. 39, 8534–8544 (2015). https://doi.org/10.1039/C5NJ01300C

    Article  CAS  Google Scholar 

  96. Wang, S., Wang, L., Zhang, K., et al.: Organic Li4C8H2O6 nanosheets for lithium-ion batteries. Nano Lett. 13, 4404–4409 (2013). https://doi.org/10.1021/nl402239p

    Article  CAS  Google Scholar 

  97. Maiti, S., Pramanik, A., Dhawa, T., et al.: Redox-active organic molecular salt of 1,2,4-benzenetricarboxylic acid as lithium-ion battery anode. Mater. Lett. 209, 613–617 (2017). https://doi.org/10.1016/j.matlet.2017.08.112

    Article  CAS  Google Scholar 

  98. Li, L., Hong, Y.J., Chen, D.Y., et al.: A laterally extended perylene hexacarboxylate via Diels-Alder reaction for high-performance organic lithium-ion batteries. Electrochim. Acta 254, 255–261 (2017). https://doi.org/10.1016/j.electacta.2017.09.119

    Article  CAS  Google Scholar 

  99. Renault, S., Brandell, D., Gustafsson, T., et al.: Improving the electrochemical performance of organic Li-ion battery electrodes. Chem. Commun. 49, 1945–1947 (2013). https://doi.org/10.1039/c3cc39065a

    Article  CAS  Google Scholar 

  100. Zhao, Q., Wang, J.B., Chen, C.C., et al.: Nanostructured organic electrode materials grown on graphene with covalent-bond interaction for high-rate and ultra-long-life lithium-ion batteries. Nano Res. 10, 4245–4255 (2017). https://doi.org/10.1007/s12274-017-1580-9

    Article  CAS  Google Scholar 

  101. Luo, C., Huang, R., Kevorkyants, R., et al.: Self-assembled organic nanowires for high power density lithium ion batteries. Nano Lett 14, 1596–1602 (2014). https://doi.org/10.1021/nl500026j

    Article  CAS  Google Scholar 

  102. Wu, X.Y., Ma, J., Hu, Y.S., et al.: Nano-sized carboxylates as anode materials for rechargeable lithium-ion batteries. J. Energy Chem. 23, 269–273 (2014). https://doi.org/10.1016/S2095-4956(14)60146-7

    Article  CAS  Google Scholar 

  103. Wang, J.W., Zhao, H.Y., Xu, L.T., et al.: Three-electron redox enabled dithiocarboxylate electrode for superior lithium storage performance. ACS Appl. Mater. Interfaces 10, 35469–35476 (2018). https://doi.org/10.1021/acsami.8b11485

    Article  CAS  Google Scholar 

  104. Wan, W., Lee, H., Yu, X.Q., et al.: Tuning the electrochemical performances of anthraquinone organic cathode materials for Li-ion batteries through the sulfonic sodium functional group. RSC Adv. 4, 19878–19882 (2014). https://doi.org/10.1039/c4ra01166j

    Article  CAS  Google Scholar 

  105. Lu, Y., Zhao, Q., Miao, L.C., et al.: Flexible and free-standing organic/carbon nanotubes hybrid films as cathode for rechargeable lithium-ion batteries. J. Phys. Chem. C 121, 14498–14506 (2017). https://doi.org/10.1021/acs.jpcc.7b04341

    Article  CAS  Google Scholar 

  106. Lakraychi, A.E., Fahsi, K., Aymard, L., et al.: Carboxylic and sulfonic N-substituted naphthalene diimide salts as highly stable non-polymeric organic electrodes for lithium batteries. Electrochem. Commun. 76, 47–50 (2017). https://doi.org/10.1016/j.elecom.2017.01.019

    Article  CAS  Google Scholar 

  107. Deng, Q.J., Fan, C., Wang, L.P., et al.: Organic potassium terephthalate (K2C8H4O4) with stable lattice structure exhibits excellent cyclic and rate capability in Li-ion batteries. Electrochim. Acta 222, 1086–1093 (2016). https://doi.org/10.1016/j.electacta.2016.11.079

    Article  CAS  Google Scholar 

  108. Wang, L.P., Zhang, H.Q., Mou, C.X., et al.: Dicarboxylate CaC8H4O4 as a high-performance anode for Li-ion batteries. Nano Res. 8, 523–532 (2015). https://doi.org/10.1007/s12274-014-0666-x

    Article  CAS  Google Scholar 

  109. Fei, H.L., Liu, X., Li, Z.W.: Hollow cobalt coordination polymer microspheres: a promising anode material for lithium-ion batteries with high performance. Chem. Eng. J. 281, 453–458 (2015). https://doi.org/10.1016/j.cej.2015.06.082

    Article  CAS  Google Scholar 

  110. Fei, H.L., Li, Z.W., Liu, X.: Manganese pyridinedicarboxylates: new anode materials for lithium-ion batteries with good cycling performance. J. Alloy. Compd. 640, 118–121 (2015). https://doi.org/10.1016/j.jallcom.2015.04.044

    Article  CAS  Google Scholar 

  111. Fei, H.L., Feng, W.J., Xu, T.: Zinc naphthalenedicarboxylate coordination complex: a promising anode material for lithium and sodium-ion batteries with good cycling stability. J. Colloid Interface Sci. 488, 277–281 (2017). https://doi.org/10.1016/j.jcis.2016.11.010

    Article  CAS  Google Scholar 

  112. Fei, H.L., Lin, Y.Q.: Zinc pyridinedicarboxylate micro-nanostructures: promising anode materials for lithium-ion batteries with excellent cycling performance. J. Colloid Interface Sci. 481, 256–262 (2016). https://doi.org/10.1016/j.jcis.2016.07.056

    Article  CAS  Google Scholar 

  113. Wu, D.B., Li, H., Li, R.G., et al.: In situ growth of copper rhodizonate complexes on reduced graphene oxide for high-performance organic lithium-ion batteries. Chem. Commun. 54, 11415–11418 (2018). https://doi.org/10.1039/c8cc06317f

    Article  CAS  Google Scholar 

  114. Schmidt, D., Häupler, B., Stolze, C., et al.: Poly[N-(10-oxo-2-vinylanthracen-9(10H)-ylidene)cyanamide] as a novel cathode material for Li-organic batteries. J. Polym. Sci. Part A Polym. Chem. 53, 2517–2523 (2015). https://doi.org/10.1002/pola.27716

    Article  CAS  Google Scholar 

  115. Lyu, H.L., Liu, J.R., Mahurin, S., et al.: Polythiophene coated aromatic polyimide enabled ultrafast and sustainable lithium ion batteries. J. Mater. Chem. A 5, 24083–24090 (2017). https://doi.org/10.1039/c7ta07893e

    Article  CAS  Google Scholar 

  116. Pirnat, K., Mali, G., Gaberscek, M., et al.: Quinone-formaldehyde polymer as an active material in Li-ion batteries. J. Power Sources 315, 169–178 (2016). https://doi.org/10.1016/j.jpowsour.2016.03.010

    Article  CAS  Google Scholar 

  117. Song, Z.P., Qian, Y.M., Gordin, M.L., et al.: Polyanthraquinone as a reliable organic electrode for stable and fast lithium storage. Angew. Chem. Int. Ed. 54, 13947–13951 (2015). https://doi.org/10.1002/anie.201506673

    Article  CAS  Google Scholar 

  118. Nauroozi, D., Pejic, M., Schwartz, P.O., et al.: Synthesis and solvent-free polymerisation of vinyl terephthalate for application as an anode material in organic batteries. RSC Adv. 6, 111350–111357 (2016). https://doi.org/10.1039/c6ra24064j

    Article  CAS  Google Scholar 

  119. Li, Z.P., Zhong, W.H., Cheng, A., et al.: Novel hyper-crosslinked polymer anode for lithium-ion batteries with highly reversible capacity and long cycling stability. Electrochim. Acta 281, 162–169 (2018). https://doi.org/10.1016/j.electacta.2018.05.149

    Article  CAS  Google Scholar 

  120. Jähnert, T., Hager, M.D., Schubert, U.S.: Assorted phenoxyl-radical polymers and their application in lithium-organic batteries. Macromol. Rapid Commun. 37, 725–730 (2016). https://doi.org/10.1002/marc.201500702

    Article  CAS  Google Scholar 

  121. Xie, J., Wang, Z.L., Gu, P.Y., et al.: A novel quinone-based polymer electrode for high performance lithium-ion batteries. Sci. China Mater. 59, 6–11 (2016). https://doi.org/10.1007/s40843-016-0112-3

    Article  CAS  Google Scholar 

  122. Wang, S., Wang, Q.Y., Shao, P.P., et al.: Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries. J. Am. Chem. Soc. 139, 4258–4261 (2017). https://doi.org/10.1021/jacs.7b02648

    Article  CAS  Google Scholar 

  123. Xu, F., Jin, S.B., Zhong, H., et al.: Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage. Sci. Rep. 5, 8225 (2015). https://doi.org/10.1038/srep08225

    Article  CAS  Google Scholar 

  124. Yang, D.H., Yao, Z.Q., Wu, D.H., et al.: Structure-modulated crystalline covalent organic frameworks as high-rate cathodes for Li-ion batteries. J. Mater. Chem. A 4, 18621–18627 (2016). https://doi.org/10.1039/c6ta07606h

    Article  CAS  Google Scholar 

  125. Liu, K., Zheng, J.M., Zhong, G.M., et al.: Poly(2,5-dihydroxy-1,4-benzoquinonyl sulfide) (PDBS) as a cathode material for lithium ion batteries. J. Mater. Chem. 21, 4125–4131 (2011). https://doi.org/10.1039/c0jm03127e

    Article  CAS  Google Scholar 

  126. Xu, W., Read, A., Koech, P.K., et al.: Factors affecting the battery performance of anthraquinone-based organic cathode materials. J. Mater. Chem. 22, 4032–4039 (2012). https://doi.org/10.1039/c2jm15764k

    Article  CAS  Google Scholar 

  127. Wei, W.F., Li, L., Zhang, L., et al.: A benzoquinone-based cathode for Li-organic batteries. Mater. Lett. 213, 126–130 (2018). https://doi.org/10.1016/j.matlet.2017.11.035

    Article  CAS  Google Scholar 

  128. Vizintin, A., Bitenc, J., Kopač Lautar, A., et al.: Probing electrochemical reactions in organic cathode materials via in operando infrared spectroscopy. Nat. Commun. 9, 661 (2018). https://doi.org/10.1038/s41467-018-03114-1

    Article  CAS  Google Scholar 

  129. Song, Z.P., Qian, Y.M., Zhang, T., et al.: Poly(benzoquinonyl sulfide) as a high-energy organic cathode for rechargeable Li and Na batteries. Adv. Sci. 2, 1500124 (2015). https://doi.org/10.1002/advs.201500124

    Article  CAS  Google Scholar 

  130. Jing, Y., Liang, Y.L., Gheytani, S., et al.: Cross-conjugated oligomeric quinones for high performance organic batteries. Nano Energy 37, 46–52 (2017). https://doi.org/10.1016/j.nanoen.2017.04.055

    Article  CAS  Google Scholar 

  131. Speer, M.E., Kolek, M., Jassoy, J.J., et al.: Thianthrene-functionalized polynorbornenes as high-voltage materials for organic cathode-based dual-ion batteries. Chem. Commun. 51, 15261–15264 (2015). https://doi.org/10.1039/c5cc04932f

    Article  CAS  Google Scholar 

  132. Zhang, Y., Huang, Y.S., Yang, G.H., et al.: Dispersion-assembly approach to synthesize three-dimensional graphene/polymer composite aerogel as a powerful organic cathode for rechargeable Li and Na batteries. ACS Appl. Mater. Interfaces 9, 15549–15556 (2017). https://doi.org/10.1021/acsami.7b03687

    Article  CAS  Google Scholar 

  133. Huang, Y.S., Li, K., Liu, J.J., et al.: Three-dimensional graphene/polyimide composite-derived flexible high-performance organic cathode for rechargeable lithium and sodium batteries. J. Mater. Chem. A 5, 2710–2716 (2017). https://doi.org/10.1039/c6ta09754e

    Article  CAS  Google Scholar 

  134. Lyu, H., Li, P., Liu, J., et al.: Aromatic polyimide/graphene composite organic cathodes for fast and sustainable lithium-ion batteries. Chemsuschem 11, 763–772 (2018). https://doi.org/10.1002/cssc.201702001

    Article  CAS  Google Scholar 

  135. Wu, H.P., Wang, K., Meng, Y.N., et al.: An organic cathode material based on a polyimide/CNT nanocomposite for lithium ion batteries. J. Mater. Chem. A 1, 6366–6372 (2013). https://doi.org/10.1039/c3ta10473g

    Article  CAS  Google Scholar 

  136. Wu, H.P., Shevlin, S.A., Meng, Q.H., et al.: Flexible and binder-free organic cathode for high-performance lithium-ion batteries. Adv. Mater. 26, 3338–3343 (2014). https://doi.org/10.1002/adma.201305452

    Article  CAS  Google Scholar 

  137. Wu, H.P., Meng, Q.H., Yang, Q., et al.: Large-area polyimide/SWCNT nanocable cathode for flexible lithium-ion batteries. Adv. Mater. 27, 6504–6510 (2015). https://doi.org/10.1002/adma.201502241

    Article  CAS  Google Scholar 

  138. Ahmad, A., Wu, H.P., Guo, Y.F., et al.: A graphene supported polyimide nanocomposite as a high performance organic cathode material for lithium ion batteries. RSC Adv. 6, 33287–33294 (2016). https://doi.org/10.1039/c5ra27471k

    Article  CAS  Google Scholar 

  139. Liu, T.Y., Lee, B., Kim, B.G., et al.: In situ polymerization of dopamine on graphene framework for charge storage applications. Small 14, 1801236 (2018). https://doi.org/10.1002/smll.201801236

    Article  CAS  Google Scholar 

  140. Luo, Z.Q., Liu, L.J., Ning, J.X., et al.: A microporous covalent-organic framework with abundant accessible carbonyl groups for lithium-ion batteries. Angew. Chem. Int. Ed. 57, 9443–9446 (2018). https://doi.org/10.1002/anie.201805540

    Article  CAS  Google Scholar 

  141. Wu, H.P., Yang, Q., Meng, Q.H., et al.: A polyimide derivative containing different carbonyl groups for flexible lithium ion batteries. J. Mater. Chem. A 4, 2115–2121 (2016). https://doi.org/10.1039/c5ta07246h

    Article  CAS  Google Scholar 

  142. Tian, B.B., Ning, G.H., Tang, W., et al.: Polyquinoneimines for lithium storage: more than the sum of its parts. Mater. Horiz. 3, 429–433 (2016). https://doi.org/10.1039/c6mh00072j

    Article  CAS  Google Scholar 

  143. Tian, D., Zhang, H.Z., Zhang, D.S., et al.: Li-ion storage and gas adsorption properties of porous polyimides (PIs). RSC Adv. 4, 7506–7510 (2014). https://doi.org/10.1039/c3ra45563g

    Article  CAS  Google Scholar 

  144. Ahmad, A., Meng, Q.H., Melhi, S., et al.: A hierarchically porous hypercrosslinked and novel quinone based stable organic polymer electrode for lithium-ion batteries. Electrochim. Acta 255, 145–152 (2017). https://doi.org/10.1016/j.electacta.2017.09.017

    Article  CAS  Google Scholar 

  145. Zindy, N., Blaskovits, J.T., Beaumont, C., et al.: Pyromellitic diimide-based copolymers and their application as stable cathode active materials in lithium and sodium-ion batteries. Chem. Mater. 30, 6821–6830 (2018). https://doi.org/10.1021/acs.chemmater.8b02862

    Article  CAS  Google Scholar 

  146. Petronico, A., Bassett, K.L., Nicolau, B.G., et al.: Toward a four-electron redox quinone polymer for high capacity lithium ion storage. Adv. Energy Mater. 8, 1700960 (2018). https://doi.org/10.1002/aenm.201700960

    Article  CAS  Google Scholar 

  147. Song, Z.P., Qian, Y.M., Liu, X.Z., et al.: A quinone-based oligomeric lithium salt for superior Li-organic batteries. Energy Environ. Sci. 7, 4077–4086 (2014). https://doi.org/10.1039/c4ee02575j

    Article  CAS  Google Scholar 

  148. Hong, J., Lee, M., Lee, B., et al.: Biologically inspired pteridine redox centres for rechargeable batteries. Nat. Commun. 5, 5335 (2014). https://doi.org/10.1038/ncomms6335

    Article  CAS  Google Scholar 

  149. Tian, B.B., Ding, Z.J., Ning, G.H., et al.: Amino group enhanced phenazine derivatives as electrode materials for lithium storage. Chem. Commun. 53, 2914–2917 (2017). https://doi.org/10.1039/c6cc09084b

    Article  CAS  Google Scholar 

  150. Ghosh, A., Mitra, S.: Facile synthesis of viologen and its reversible lithium storage property in organic lithium-ion batteries. RSC Adv. 5, 105632–105635 (2015). https://doi.org/10.1039/c5ra20301e

    Article  CAS  Google Scholar 

  151. Peng, C.X., Ning, G.H., Su, J., et al.: Reversible multi-electron redox chemistry of π-conjugated N-containing heteroaromatic molecule-based organic cathodes. Nat. Energy 2, 17074 (2017). https://doi.org/10.1038/nenergy.2017.74

    Article  CAS  Google Scholar 

  152. Wang, J.Q., Chen, C.S., Zhang, Y.G.: Hexaazatrinaphthylene-based porous organic polymers as organic cathode materials for lithium-ion batteries. ACS Sustain. Chem. Eng. 6, 1772–1779 (2018). https://doi.org/10.1021/acssuschemeng.7b03165

    Article  CAS  Google Scholar 

  153. Wang, J.Q., Tee, K.Z., Lee, Y., et al.: Hexaazatriphenylene derivatives/GO composites as organic cathodes for lithium ion batteries. J. Mater. Chem. A 6, 2752–2757 (2018). https://doi.org/10.1039/c7ta10232a

    Article  CAS  Google Scholar 

  154. Chen, Z.X., Su, C., Zhu, X.G., et al.: Micro-/Mesoporous conjugated polymer based on star-shaped triazine-functional triphenylamine framework as the performance-improved cathode of Li-organic battery. J. Polym. Sci. Part A: Polym. Chem. 56, 2574–2583 (2018). https://doi.org/10.1002/pola.29239

    Article  CAS  Google Scholar 

  155. Bai, L.Y., Gao, Q., Zhao, Y.L.: Two fully conjugated covalent organic frameworks as anode materials for lithium ion batteries. J. Mater. Chem. A 4, 14106–14110 (2016). https://doi.org/10.1039/c6ta06449c

    Article  CAS  Google Scholar 

  156. Feng, S., Xu, H., Zhang, C., et al.: Bicarbazole-based redox-active covalent organic frameworks for ultrahigh-performance energy storage. Chem. Commun. 53, 11334–11337 (2017). https://doi.org/10.1039/c7cc07024a

    Article  CAS  Google Scholar 

  157. Wu, M.M., Zhao, Y., Sun, B.Q., et al.: A 2D covalent organic framework as a high-performance cathode material for lithium-ion batteries. Nano Energy 70, 104498 (2020). https://doi.org/10.1016/j.nanoen.2020.104498

    Article  CAS  Google Scholar 

  158. Xu, S.Q., Wang, G., Biswal, B.P., et al.: A nitrogen-rich 2D sp2-carbon-linked conjugated polymer framework as a high-performance cathode for lithium-ion batteries. Angew. Chem. Int. Ed. 58, 849–853 (2019). https://doi.org/10.1002/anie.201812685

    Article  CAS  Google Scholar 

  159. Xu, L.H., Ji, L., Wang, G.S., et al.: A novel nitroxide radical polymer-containing conductive polyaniline as molecular skeleton: its synthesis and electrochemical properties as organic cathode. Ionics 22, 1377–1385 (2016). https://doi.org/10.1007/s11581-016-1663-8

    Article  CAS  Google Scholar 

  160. Xu, L.H., Guo, P.J., He, H.H., et al.: Preparation of TEMPO-contained pyrrole copolymer by in situ electrochemical polymerization and its electrochemical performances as cathode of lithium ion batteries. Ionics 23, 1375–1382 (2017). https://doi.org/10.1007/s11581-016-1965-x

    Article  CAS  Google Scholar 

  161. Jiménez, P., Levillain, E., Alévêque, O., et al.: Lithium n-doped polyaniline as a high-performance electroactive material for rechargeable batteries. Angew. Chem. Int. Ed. 56, 1553–1556 (2017). https://doi.org/10.1002/anie.201607820

    Article  CAS  Google Scholar 

  162. Su, C., He, H.H., Xu, L.H., et al.: A mesoporous conjugated polymer based on a high free radical density polytriphenylamine derivative: its preparation and electrochemical performance as a cathode material for Li-ion batteries. J. Mater. Chem. A 5, 2701–2709 (2017). https://doi.org/10.1039/c6ta10127e

    Article  CAS  Google Scholar 

  163. Su, C., Ji, L., Xu, L.H., et al.: A polytriphenylamine derivative exhibiting a four-electron redox center as a high free radical density organic cathode. RSC Adv. 6, 22989–22995 (2016). https://doi.org/10.1039/c6ra03248f

    Article  CAS  Google Scholar 

  164. Kim, J., Park, H.S., Kim, T.H., et al.: An inter-tangled network of redox-active and conducting polymers as a cathode for ultrafast rechargeable batteries. Phys. Chem. Chem. Phys. 16, 5295–5300 (2014). https://doi.org/10.1039/c3cp54624a

    Article  CAS  Google Scholar 

  165. Yao, M., Senoh, H., Sakai, T., et al.: Redox active poly(N-vinylcarbazole) for use in rechargeable lithium batteries. J. Power Sources 202, 364–368 (2012). https://doi.org/10.1016/j.jpowsour.2011.11.035

    Article  CAS  Google Scholar 

  166. Su, C., Yang, F., Ji, L., et al.: Polytriphenylamine derivative with high free radical density as the novel organic cathode for lithium ion batteries. J. Mater. Chem. A 2, 20083–20088 (2014). https://doi.org/10.1039/c4ta03413a

    Article  CAS  Google Scholar 

  167. Kim, Y., Jo, C., Lee, J., et al.: An ordered nanocomposite of organic radicalpolymer and mesocellular carbon foam as cathode material in lithium ion batteries. J. Mater. Chem. 22, 1453–1458 (2012). https://doi.org/10.1039/c1jm15053g

    Article  CAS  Google Scholar 

  168. Bahceci, S., Esat, B.: A polyacetylene derivative with pendant TEMPO group as cathode material for rechargeable batteries. J. Power Sources 242, 33–40 (2013). https://doi.org/10.1016/j.jpowsour.2013.05.051

    Article  CAS  Google Scholar 

  169. Hansen, K.A., Nerkar, J., Thomas, K., et al.: New spin on organic radical batteries: an isoindoline nitroxide-based high-voltage cathode material. ACS Appl. Mater. Interfaces 10, 7982–7988 (2018). https://doi.org/10.1021/acsami.7b18252

    Article  CAS  Google Scholar 

  170. Zhang, K., Hu, Y.X., Wang, L.Z., et al.: Pyrene-functionalized PTMA by NRC for greater π–π stacking with rGO and enhanced electrochemical properties. ACS Appl. Mater. Interfaces 9, 34900–34908 (2017). https://doi.org/10.1021/acsami.7b09604

    Article  CAS  Google Scholar 

  171. Xiong, J.Q., Wei, Z., Xu, T., et al.: Polytriphenylamine derivative with enhanced electrochemical performance as the organic cathode material for rechargeable batteries. Polymer 130, 135–142 (2017). https://doi.org/10.1016/j.polymer.2017.10.004

    Article  CAS  Google Scholar 

  172. Wang, Z.H., Xu, C., Tammela, P., et al.: Conducting polymer paper-based cathodes for high-areal-capacity lithium-organic batteries. Energy Technol. 3, 563–569 (2015). https://doi.org/10.1002/ente.201402224

    Article  CAS  Google Scholar 

  173. Deng, W.W., Shen, Y.F., Liang, X.M., et al.: Redox-active organics/polypyrrole composite as a cycle-stable cathode for Li ion batteries. Electrochim. Acta 147, 426–431 (2014). https://doi.org/10.1016/j.electacta.2014.09.103

    Article  CAS  Google Scholar 

  174. Qie, L., Yuan, L.X., Zhang, W.X., et al.: Revisit of polypyrrole as cathode material for lithium-ion battery. J. Electrochem. Soc. 159, A1624–A1629 (2012). https://doi.org/10.1149/2.042210jes

    Article  CAS  Google Scholar 

  175. Godet-Bar, T., Leprêtre, J.C., Le Bacq, O., et al.: Electrochemical and ab initio investigations to design a new phenothiazine based organic redox polymeric material for metal-ion battery cathodes. Phys. Chem. Chem. Phys. 17, 25283–25296 (2015). https://doi.org/10.1039/c5cp01495f

    Article  CAS  Google Scholar 

  176. Vlad, A., Arnould, K., Ernould, B., et al.: Exploring the potential of polymer battery cathodes with electrically conductive molecular backbone. J. Mater. Chem. A 3, 11189–11193 (2015). https://doi.org/10.1039/c5ta01500f

    Article  CAS  Google Scholar 

  177. Pirnat, K., Bitenc, J., Vizintin, A., et al.: Indirect synthesis route toward cross-coupled polymers for high voltage organic positive electrodes. Chem. Mater. 30, 5726–5732 (2018). https://doi.org/10.1021/acs.chemmater.8b02329

    Article  CAS  Google Scholar 

  178. Truong, T.T., Coates, G.W., Abruña, H.D.: High power organic cathodes using thin films of electropolymerized benzidine polymers. Chem. Commun. 51, 14674–14677 (2015). https://doi.org/10.1039/c5cc05134g

    Article  CAS  Google Scholar 

  179. Lee, M., Hong, J., Lee, B., et al.: Multi-electron redox phenazine for ready-to-charge organic batteries. Green Chem. 19, 2980–2985 (2017). https://doi.org/10.1039/c7gc00849j

    Article  CAS  Google Scholar 

  180. Dai, G.L., Wang, X.L., Qian, Y.M., et al.: Manipulation of conjugation to stabilize N redox-active centers for the design of high-voltage organic battery cathode. Energy Storage Mater. 16, 236–242 (2019). https://doi.org/10.1016/j.ensm.2018.06.005

    Article  Google Scholar 

  181. Lakraychi, A.E., Deunf, E., Fahsi, K., et al.: An air-stable lithiated cathode material based on a 1,4-benzenedisulfonate backbone for organic Li-ion batteries. J. Mater. Chem. A 6, 19182–19189 (2018). https://doi.org/10.1039/c8ta07097k

    Article  CAS  Google Scholar 

  182. Patil, N., Aqil, A., Ouhib, F., et al.: Bioinspired redox-active catechol-bearing polymers as ultrarobust organic cathodes for lithium storage. Adv. Mater. 29, 1703373 (2017). https://doi.org/10.1002/adma.201703373

    Article  CAS  Google Scholar 

  183. Otteny, F., Kolek, M., Becking, J., et al.: Unlocking full discharge capacities of poly(vinylphenothiazine) as battery cathode material by decreasing polymer mobility through cross-linking. Adv. Energy Mater. 8, 1802151 (2018). https://doi.org/10.1002/aenm.201802151

    Article  CAS  Google Scholar 

  184. Zhang, C., Yang, X., Ren, W.F., et al.: Microporous organic polymer-based lithium ion batteries with improved rate performance and energy density. J. Power Sources 317, 49–56 (2016). https://doi.org/10.1016/j.jpowsour.2016.03.080

    Article  CAS  Google Scholar 

  185. Wang, X., Zhang, C., Xu, Y.F., et al.: Conjugated microporous polytetra(2-thienyl)ethylene as high performance anode material for lithium- and sodium-ion batteries. Macromol. Chem. Phys. 219, 1700524 (2018). https://doi.org/10.1002/macp.201700524

    Article  CAS  Google Scholar 

  186. Zhang, C., He, Y.W., Mu, P., et al.: Toward high performance thiophene-containing conjugated microporous polymer anodes for lithium-ion batteries through structure design. Adv. Funct. Mater. 28, 1705432 (2018). https://doi.org/10.1002/adfm.201705432

    Article  CAS  Google Scholar 

  187. Han, X.Y., Qing, G.Y., Sun, J.T., et al.: How many lithium ions can be inserted onto fused C6 aromatic ring systems? Angew. Chem. Int. Ed. 51, 5147–5151 (2012). https://doi.org/10.1002/anie.201109187

    Article  CAS  Google Scholar 

  188. Wu, J.S., Rui, X.H., Long, G.K., et al.: Pushing up lithium storage through nanostructured polyazaacene analogues as anode. Angew. Chem. Int. Ed. 54, 7354–7358 (2015). https://doi.org/10.1002/anie.201503072

    Article  CAS  Google Scholar 

  189. Wu, J.S., Rui, X.H., Wang, C.Y., et al.: Nanostructured conjugated ladder polymers for stable and fast lithium storage anodes with high-capacity. Adv. Energy Mater. 5, 1402189 (2015). https://doi.org/10.1002/aenm.201402189

    Article  CAS  Google Scholar 

  190. Xie, J., Rui, X.H., Gu, P.Y., et al.: Novel conjugated ladder-structured oligomer anode with high lithium storage and long cycling capability. ACS Appl. Mater. Interfaces 8, 16932–16938 (2016). https://doi.org/10.1021/acsami.6b04277

    Article  CAS  Google Scholar 

  191. Sun, T., Li, Z.J., Wang, H.G., et al.: A biodegradable polydopamine-derived electrode material for high-capacity and long-life lithium-ion and sodium-ion batteries. Angew. Chem. Int. Ed. 55, 10662–10666 (2016). https://doi.org/10.1002/anie.201604519

    Article  CAS  Google Scholar 

  192. Mukherjee, D., Gowda, Y.K.G., Makri Nimbegondi Kotresh, H., et al.: Porous, hyper-cross-linked, three-dimensional polymer as stable, high rate capability electrode for lithium-ion battery. ACS Appl. Mater. Interfaces 9, 19446–19454 (2017). https://doi.org/10.1021/acsami.6b09575

    Article  CAS  Google Scholar 

  193. Lei, Z.D., Yang, Q.S., Xu, Y., et al.: Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry. Nat. Commun. 9, 576 (2018). https://doi.org/10.1038/s41467-018-02889-7

    Article  CAS  Google Scholar 

  194. Lei, Z.D., Chen, X.D., Sun, W.W., et al.: Exfoliated triazine-based covalent organic nanosheets with multielectron redox for high-performance lithium organic batteries. Adv. Energy Mater. 9, 1801010 (2019). https://doi.org/10.1002/aenm.201801010

    Article  CAS  Google Scholar 

  195. Chen, X.D., Li, Y.S., Wang, L., et al.: High-lithium-affinity chemically exfoliated 2D covalent organic frameworks. Adv. Mater. 31, 1901640 (2019). https://doi.org/10.1002/adma.201901640

    Article  CAS  Google Scholar 

  196. Haldar, S., Roy, K., Kushwaha, R., et al.: Chemical exfoliation as a controlled route to enhance the anodic performance of COF in LIB. Adv. Energy Mater. 9, 1902428 (2019). https://doi.org/10.1002/aenm.201902428

    Article  CAS  Google Scholar 

  197. Yang, H.Q., Liu, S.W., Cao, L.H., et al.: Superlithiation of non-conductive polyimide toward high-performance lithium-ion batteries. J. Mater. Chem. A 6, 21216–21224 (2018). https://doi.org/10.1039/c8ta05109g

    Article  CAS  Google Scholar 

  198. Kang, H.W., Liu, H.L., Li, C.X., et al.: Polyanthraquinone-triazine: a promising anode material for high-energy lithium-ion batteries. ACS Appl. Mater. Interfaces 10, 37023–37030 (2018). https://doi.org/10.1021/acsami.8b12888

    Article  CAS  Google Scholar 

  199. Ryu, J., Park, B., Kang, J., et al.: Three-dimensional monolithic organic battery electrodes. ACS Nano 13, 14357–14367 (2019). https://doi.org/10.1021/acsnano.9b07807

    Article  CAS  Google Scholar 

  200. Lin, Z.Q., Xie, J., Zhang, B.W., et al.: Solution-processed nitrogen-rich graphene-like holey conjugated polymer for efficient lithium ion storage. Nano Energy 41, 117–127 (2017). https://doi.org/10.1016/j.nanoen.2017.08.038

    Article  CAS  Google Scholar 

  201. Yang, H., Zhang, S.L., Han, L.H., et al.: High conductive two-dimensional covalent organic framework for lithium storage with large capacity. ACS Appl. Mater. Interfaces 8, 5366–5375 (2016). https://doi.org/10.1021/acsami.5b12370

    Article  CAS  Google Scholar 

  202. Haldar, S., Roy, K., Nandi, S., et al.: High and reversible lithium ion storage in self-exfoliated triazole-triformyl phloroglucinol-based covalent organic nanosheets. Adv. Energy Mater. 8, 1702170 (2018). https://doi.org/10.1002/aenm.201702170

    Article  CAS  Google Scholar 

  203. Zhang, H., Sun, W., Chen, X., et al.: Few-layered fluorinated triazine-based covalent organic nanosheets for high-performance alkali organic batteries. ACS Nano 13, 14252–14261 (2019). https://doi.org/10.1021/acsnano.9b07360

    Article  CAS  Google Scholar 

  204. Luo, C., Ji, X., Hou, S., et al.: Azo compounds derived from electrochemical reduction of nitro compounds for high performance Li-ion batteries. Adv. Mater. 30, 1706498 (2018). https://doi.org/10.1002/adma.201706498

    Article  CAS  Google Scholar 

  205. Zhao, G.F., Zhang, Y.H., Gao, Z.H., et al.: Dual active site of the azo and carbonyl-modified covalent organic framework for high-performance Li storage. ACS Energy Lett. 5, 1022–1031 (2020). https://doi.org/10.1021/acsenergylett.0c00069

    Article  CAS  Google Scholar 

  206. Renault, S., Oltean, V.A., Araujo, C.M., et al.: Superlithiation of organic electrode materials: the case of dilithium benzenedipropiolate. Chem. Mater. 28, 1920–1926 (2016). https://doi.org/10.1021/acs.chemmater.6b00267

    Article  CAS  Google Scholar 

  207. Park, J., Lee, C.W., Park, J.H., et al.: Capacitive organic anode based on fluorinated-contorted hexabenzocoronene: applicable to lithium-ion and sodium-ion storage cells. Adv. Sci. 5, 1801365 (2018). https://doi.org/10.1002/advs.201801365

    Article  CAS  Google Scholar 

  208. Deng, Q.J., He, S.J., Pei, J.F., et al.: Exploitation of redox-active 1,4-dicyanobenzene and 9,10-dicyanoanthracene as the organic electrode materials in rechargeable lithium battery. Electrochem. Commun. 75, 29–32 (2017). https://doi.org/10.1016/j.elecom.2016.12.005

    Article  CAS  Google Scholar 

  209. Schon, T.B., Tilley, A.J., Kynaston, E.L., et al.: Three-dimensional arylene diimide frameworks for highly stable lithium ion batteries. ACS Appl. Mater. Interfaces 9, 15631–15637 (2017). https://doi.org/10.1021/acsami.7b02336

    Article  CAS  Google Scholar 

  210. Zhang, H.C., Xie, Y.P., Chen, X.J., et al.: Naphthalene diimide-ethylene conjugated copolymer as cathode material for lithium ion batteries. J. Electrochem. Soc. 164, A290–A294 (2016). https://doi.org/10.1149/2.1011702jes

    Article  CAS  Google Scholar 

  211. Sharma, P., Damien, D., Nagarajan, K., et al.: Perylene-polyimide-based organic electrode materials for rechargeable lithium batteries. J. Phys. Chem. Lett. 4, 3192–3197 (2013). https://doi.org/10.1021/jz4017359

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Xiudong Chen and Xiaojie Yin contributed equally to this work. This work was generously funded by the National Natural Science Foundation of China (52073170, 22065017), the Project funded by China Postdoctoral Science Foundation (BX2021029, 2021M700353), the Start-Up Grant and Scientific Research Project of Chaohu University (Nos. KYQD-202008 and XLY-202012), the Shanghai Municipal Education Commission (Innovation Program 2019-01-07-00-09-E00021), and the Creative Research Team of High-level Local Universities in Shanghai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Xiudong Chen and Xiaojie Yin contribute equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Yin, X., Aslam, J. et al. Recent Progress and Design Principles for Rechargeable Lithium Organic Batteries. Electrochem. Energy Rev. 5, 12 (2022). https://doi.org/10.1007/s41918-022-00135-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41918-022-00135-9

Keywords

Navigation