Skip to main content
Log in

Dynamic recrystallization behavior and microstructure evolution of high-performance Cu–3.28Ni–0.6Si–0.22Zn–0.11Cr–0.04P during hot compression

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

By means of isothermal compression at temperatures in the range of 650–900 °C and strain rates in the range of 0.001–1 s−1, the dynamic recrystallization behavior and microstructural evolution of a Cu–3.28Ni–0.6Si–0.22Zn–0.11Cr–0.04P (wt%) alloy designed by a machine learning method were investigated. A semiempirical constitutive equation, processing maps and an average activation energy were generated. The microstructure under different conditions and the effect of strain rate on the texture of the alloy at 800–900 °C were observed. The results show that the suitable temperature is 800–900 °C; when the strain is less than 0.4, the appropriate strain rate is 0.01–0.5 s−1; and when the strain is greater than 0.4, the appropriate strain rate is below 0.05 s−1. After deformation at 800 °C, the main texture changed from {112}〈111〉 of copper to a uniform distribution with the increase in strain rate, but the sample did not have obvious texture after deformation at 850 and 900 °C. The above results can provide a reference for the selection of process parameters.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhao Z, Xiao Z, Li Z, Qiu WT, Jiang HY, Lei Q, Liu ZR, Jiang YB, Zhang SJ. Microstructure and properties of a Cu–Ni–Si–Co–Cr alloy with high strength and high conductivity. Mater Sci Eng A. 2019;759:396.

    Article  CAS  Google Scholar 

  2. Yi J, Jia YL, Zhao YY, Xiao Z, He KJ, Wang Q, Wang MP, Li Z. Precipitation behavior of Cu–3.0Ni–0.72Si alloy. Acta Mater. 2019;166:261.

    Article  CAS  Google Scholar 

  3. Xiao XP, Xu H, Chen JS, Wang JF, Lu J, Zhang JB, Peng LJ. Coarsening behavior of (Ni, Co)2Si particles in Cu–Ni–Co–Si alloy during aging treatment. Rare Met. 2019;38(11):1062.

    Article  CAS  Google Scholar 

  4. Lancaster A, Keswani M. Integrated circuit packaging review with an emphasis on 3D packaging. Integration. 2018;60:204.

    Article  Google Scholar 

  5. Suzuki S, Shibutani N, Mimura K, Isshiki M, Waseda Y. Improvement in strength and electrical conductivity of Cu–Ni–Si alloys by aging and cold rolling. J Alloys Compd. 2006;417(1–2):116.

    Article  CAS  Google Scholar 

  6. Ghosh G, Miyake J, Fine ME. The systems-based design of high-strength, high-conductivity alloys. JOM. 1997;49(3):56.

    Article  CAS  Google Scholar 

  7. Lei Q, Li Z, Gao Y, Peng X, Benjamin D. Microstructure and mechanical properties of a high strength Cu–Ni–Si alloy treated by combined aging processes. J Alloys Compd. 2017;695:2413.

    Article  CAS  Google Scholar 

  8. Wang W, Kang HJ, Chen ZN, Chen ZJ, Zou CL, Li RG, Yin GM, Wang TM. Effects of Cr and Zr additions on microstructure and properties of Cu–Ni–Si alloys. Mater Sci Eng A. 2016;673:378.

    Article  CAS  Google Scholar 

  9. Wang CS, Fu HD, Jiang L, Xue DZ, Xie JX. A property-oriented design strategy for high performance copper alloys via machine learning. npj Comput Mater. 2019;5(1):87.

    Article  Google Scholar 

  10. Hua K, Zhang YD, Gan WM, Kou HC, Beausir B, Li JS, Esling C. Hot deformation behavior originated from dislocation activity and β to α phase transformation in a metastable β titanium alloy. Int J Plast. 2019;119:200.

    Article  CAS  Google Scholar 

  11. Ebrahimi R, Najafizadeh A. A new method for evaluation of friction in bulk metal forming. J Mater Process Technol. 2004;152(2):136.

    Article  CAS  Google Scholar 

  12. Han Y, Qiao GJ, Sun JP, Zou DN. A comparative study on constitutive relationship of as-cast 904L austenitic stainless steel during hot deformation based on Arrhenius-type and artificial neural network models. Comput Mater Sci. 2013;67:93.

    Article  CAS  Google Scholar 

  13. Lin YC, Li QF, Xia YC, Li LT. A phenomenological constitutive model for high temperature flow stress prediction of Al–Cu–Mg alloy. Mater Sci Eng A. 2012;534:654.

    Article  CAS  Google Scholar 

  14. Ji GL, Qin FL, Zhu LY, Li Q, Li L. Dynamic recrystallization kinetics of Cu–0.36Cr–0.03Zr alloy during hot compression. J Mater Eng Perform. 2017;26(6):2698.

    Article  CAS  Google Scholar 

  15. Mirzadeh H. Constitutive modeling and prediction of hot deformation flow stress under dynamic recrystallization conditions. Mech Mater. 2015;85:66.

    Article  Google Scholar 

  16. Huang K, Logé R. A review of dynamic recrystallization phenomena in metallic materials. Mater Des. 2016;111:548.

    Article  CAS  Google Scholar 

  17. Kwon O, DeArdo AJ. On the recovery and recrystallization which attend static softening in hot-deformed copper and aluminum. Acta Metall Mater. 1990;38(1):41.

    Article  CAS  Google Scholar 

  18. Prasad Y, Seshacharyulu T. Modelling of hot deformation for microstructural control. Int Mater Rev. 1998;43(6):243.

    Article  CAS  Google Scholar 

  19. Medina SF, Hernandez CA. General expression of the Zener–Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels. Acta Mater. 1996;44(1):137.

    Article  CAS  Google Scholar 

  20. Li YS, Zhang Y, Tao NR, Lu K. Effect of the Zener-Hollomon parameter on the microstructures and mechanical properties of Cu subjected to plastic deformation. Acta Mater. 2009;57(3):761.

    Article  CAS  Google Scholar 

  21. Wang JY, Mi ZL, Li H, Jiang HT, Wang PL. Isothermal forging process and strengthening mechanism of 6082 aluminum alloy through processing map. Chin J Rare Met. 2019;43(2):113.

    Google Scholar 

  22. Chen X, Qi YG, Shi XN, Xie BC, Ning YQ. Behaviors and model of dynamic recrystallization of nickel-based superalloy IN718Plus. Chin J Rare Met. 2019;43(12):1260.

    Google Scholar 

  23. Zhang Y, Volinsky AA, Xu QQ, Chai Z, Tian BH, Liu P, Tran HT. Deformation behavior and microstructure evolution of the Cu–2Ni–0.5Si–0.15Ag alloy during hot compression. Metall Mater Trans A. 2015;46(12):5871.

    Article  CAS  Google Scholar 

  24. Zhang L, Li Z, Lei Q, Qiu WT, Luo HT. Hot deformation behavior of Cu–8.0Ni–1.8Si–0.15Mg alloy. Mater Sci Eng A. 2011;528(3):1641.

    Article  Google Scholar 

  25. Prasad Y, Seshacharyulu T. Processing maps for hot working of titanium alloys. Mater Sci Eng A. 1998;243(1):82.

    Article  Google Scholar 

  26. Yang XM, Guo HZ, Yao ZK, Yuan SC, Xin SW. Hot deformation behavior and processing parameter optimization of BT25y alloy with an initial equiaxed microstructure using processing map. Rare Met. 2018;37(9):778.

    Article  CAS  Google Scholar 

  27. Ravichandran N, Prasad Y. Dynamic recrystallization during hot deformation of aluminum: a study using processing maps. Metall Trans A. 1991;22(10):2339.

    Article  Google Scholar 

  28. Narayana Murty SVS, Nageswara Rao B, Kashyap BP. Instability criteria for hot deformation of materials. Int Mater Rev. 2000;45(1):15.

    Article  Google Scholar 

  29. Eskandari M, Mohtadi-Bonab MA, Zarei-Hanzaki A, Fatemi SM. Effect of hot deformation on texture and microstructure in Fe–Mn austenitic steel during compression loading. J Mater Eng Perform. 2018;27(4):1555.

    Article  CAS  Google Scholar 

  30. Zolotorevsky NY, Rybin VV, Matvienko AN, Ushanova EA, Philippov SA. Misorientation angle distribution of deformation-induced boundaries provided by their EBSD-based separation from original grain boundaries: case study of copper deformed by compression. Mater Charact. 2019;147:184.

    Article  CAS  Google Scholar 

  31. Bolingbroke RK, Furu T, Juul Jensen D, Vernon-Parry K. Annealing behaviour of dilute aluminium alloys following hot deformation. Mater Sci Technol. 1996;12(11):897.

    Article  CAS  Google Scholar 

  32. Sarma GB, Radhakrishnan B. Modeling microstructural effects on the evolution of cube texture during hot deformation of aluminum. Mater Sci Eng A. 2004;385(1):91.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Key Research and Development Program of China (No. 2016YFB0301300) and the National Natural Science Foundation of China (Nos. 51974028 and U1602271).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Xin Xie.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 483 kb)

Supplementary material 2 (DOC 480 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, CS., Fu, HD. & Xie, JX. Dynamic recrystallization behavior and microstructure evolution of high-performance Cu–3.28Ni–0.6Si–0.22Zn–0.11Cr–0.04P during hot compression. Rare Met. 40, 156–167 (2021). https://doi.org/10.1007/s12598-020-01578-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01578-z

Keywords

Navigation