Skip to main content
Log in

Effect of Hot Deformation on Texture and Microstructure in Fe-Mn Austenitic Steel During Compression Loading

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Hot compression tests of a new high-Mn austenitic steel were carried out at deformation temperatures of 700, 800, 900, and 1000 °C under strain rate of 0.01 s−1. The hot deformation behavior was investigated by the analyses of flow curves, texture, and deformed microstructures. Microstructures of the deformed specimens and macrotexture were examined using electron backscatter diffraction and x-ray diffraction methods, respectively. The results showed that the flow stress depended strongly on the deformation temperature and decreased by increasing deformation temperature. The microstructural evidence indicated that the dynamic recrystallization (DRX) process of experimental steel was initiated at 800 °C with necklace structure. The volume fraction of DRX grains was considerably increased by increasing deformation temperature to 1000 °C. Texture of the DRX grains tended to become a weak texture and was associated with the formation of Goss and R-Cube components. Meanwhile, martensitic transformation was detected in the hot-deformed austenite. The martensitic transformation was the most difficult in the DRX grains because of the effect of small grain size. The tendency of transformation was decreased after compression at 1000 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Eskandari, A. Zarei-Hanzaki, M.A. Mohtadi-Bonab, Y. Onuki, R. Basu, A. Asghari, and J.A. Szpunar, Grain-Orientation-Dependent of γ–ε–α′ Transformation and Twinning in a Super-High-Strength, High Ductility Austenitic Mn-Steel, Mater. Sci. Eng., A, 2016, 674, p 514

    Article  Google Scholar 

  2. O. Grassel, L. Kruger, G. Frommeyer, and L.W. Meyer, High Strength Fe-Mn-(Al, Si)TRIP/TWIP Steels Developments-Properties-Application, Int. J. Plast, 2000, 16, p 1391

    Article  Google Scholar 

  3. O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, and D. Barbier, High Manganese Austenitic Twinning Induced Plasticity Steels: A Review of the Microstructure Properties Relationships, Curr. Opin. Solid State Mater. Sci., 2011, 15, p 141

    Article  Google Scholar 

  4. H.K.D.H. Bhadeshia, Twinning-Induced Plasticity Steels, Scr. Mater., 2012, 66, p 955

    Article  Google Scholar 

  5. M. Eskandari, A. Zarei-Hanzaki, J.A. Szpunar, M.A. Mohtadi-Bonab, A.R. Kamali, and M. Nazarian-Samani, Microstructure Evolution and Mechanical Behavior of a New Microalloyed High Mn Austenitic Steel During Compressive Deformation, Mater. Sci. Eng., A, 2014, 615, p 424

    Article  Google Scholar 

  6. H.Z. Wang, P. Yang, W.M. Mao, and F.Y. Lu, Effect of Hot Deformation of Austenite on Martensitic Transformation in High Manganese Steel, J. Alloys Compd., 2013, 558, p 26

    Article  Google Scholar 

  7. P. Sahu, A.S. Hamada, S.G. Chowdhury, and L.P. Karjalainen, Structure and Microstructure Evolution During Martensitic Transformation in Wrought Fe-26Mn-0.14C Austenitic Steel: An Effect of Cooling Rate, J. Appl. Cryst., 2007, 40, p 354

    Article  Google Scholar 

  8. S.S. Ferreira, F.L. Sicupira, N.S. Cruz, D.R. Moreira, and D.B. Santos, Effect of Cooling Rate on (ε, α′) Martensite Formation in Twinning/Transformation-Induced Plasticity Fe-17Mn-0.06C Steel, Mater. Res., 2013, 16, p 6

    Article  Google Scholar 

  9. P. Sahu, A.S. Hamada, R.N. Ghosh, and L.P. Karjalainen, X-ray Diffraction Study on Cooling-Rate-Induced γfcc → εhcp Martensitic Transformation in Cast-Homogenized Fe-26Mn-0.14C Austenitic Steel, Metall. Mater. Trans. A, 2007, 38, p 1991

    Article  Google Scholar 

  10. A.S. Hamada, P. Sahu, S.G. Chowdhury, L.P. Karjalainen, J. Levoska, and T. Oittinen, Kinetics of the α’ Martensitic Transformation in Fine-Grained Fe-26Mn-0.14C Austenitic Steel, Metall. Mater. Trans. A, 2008, 39, p 462

    Article  Google Scholar 

  11. K.G. Mandal, N. Stanford, P. Hodgson, and J.H. Beynon, Effect of Hot Working on Dynamic Recrystallisation Study of as-Cast Austenitic Stainless Steel, Mater. Sci. Eng., A, 2012, 556, p 685

    Article  Google Scholar 

  12. G. Dini, A. Najafizadeh, S.M. Monir-Vaghefi, and R. Ueji, Grain Size Effect on the Martensite Formation in a High-Manganese TWIP Steel by the Rietveld Method, J. Mater. Sci. Technol., 2010, 26, p 181

    Article  Google Scholar 

  13. O.A. Zambrano, J. Valdés, Y. Aguilar, J.J. Coronado, S.A. Rodríguez, and R.E. Logé, Hot Deformation of a Fe-Mn-Al-C Steel Susceptible of κ-Carbide Precipitation, Mater. Sci. Eng., A, 2017, 689, p 269

    Article  Google Scholar 

  14. A.S. Hamada, A. Khosravifard, D. Porter, and L.P. Karjalainen, Physically Based Modeling and Characterization of Hot Deformation Behavior of Twinning-Induced Plasticity Steels Bearing Vanadium and Niobium, Mater. Sci. Eng., A, 2017, 703, p 85

    Article  Google Scholar 

  15. H.R. Abedi, A. Zarei Hanzaki, Z. Liu, R. Xin, N. Haghdadi, and P.D. Hodgson, Continuous Dynamic Recrystallization in Low Density Steel, Mater. Des., 2017, 114, p 55

    Article  Google Scholar 

  16. A.S. Hamada, L.P. Karjalainen, and M.C. Somani, The Influence of Aluminum on Hot Deformation Behavior and Tensile Properties of High-Mn TWIP Steels, Mater. Sci. Eng., A, 2007, 467, p 114

    Article  Google Scholar 

  17. D. Li, Y. Feng, Z. Yin, F. Shangguan, K. Wang, Q. Liu, and F. Hu, Hot Deformation Behavior of an Austenitic Fe-20Mn-3Si-3Al Transformation Induced Plasticity Steel, Mater. Des., 2012, 34, p 713

    Article  Google Scholar 

  18. J. Zhang, H. Di, X. Wang, Y. Cao, J. Zhang, and T. Ma, Constitutive Analysis of the Hot Deformation Behavior of Fe-23Mn-2Al-0.2C Twinning Induced Plasticity Steel in Consideration of Strain, Mater. Des., 2013, 44, p 354

    Article  Google Scholar 

  19. A. Khosravifard, A.S. Hamada, M.M. Moshksar, R. Ebrahimi, D.A. Porter, and L.P. Karjalainen, High Temperature Deformation Behavior of Two as-Cast High-Manganese TWIP Steels, Mater. Sci. Eng., A, 2013, 582, p 15

    Article  Google Scholar 

  20. D. Li, Y. Feng, S. Song, Q. Liu, Q. Bai, F. Ren, and F. Shangguan, Influences of Silicon on the Work Hardening Behavior and Hot Deformation Behavior of Fe-25 wt.%Mn-(Si, Al) TWIP Steel, J. Alloys Compd., 2015, 618, p 768

    Article  Google Scholar 

  21. N. Cabañas, J. Penning, N. Akdut, and B.C. De Cooman, High-Temperature Deformation Properties of Austenitic Fe-Mn Alloys, Metall. Mater. Trans. A, 2006, 37, p 3305–3315

    Article  Google Scholar 

  22. M. Sabet, A. Zarei-Hanzaki, and S.H. Khoddam, Dynamic Restoration Processes in High-Mn TWIP Steels, J. Eng. Mater. Technol., 2009, 131, p 51

    Article  Google Scholar 

  23. Y. Wang, W.Z. Shao, L. Zhen, L. Yang, and X.M. Zhang, Flow Behavior and Microstructures of Superalloy 718 During High Temperature Deformation, Mater. Sci. Eng., A, 2008, 497, p 479

    Article  Google Scholar 

  24. H. Jiang, J. Dong, M. Zhang, and Z. Yao, Evolution of Twins and Substructures During Low Strain Rate Hot Deformation and Contribution to Dynamic Recrystallization in Alloy 617B, Mater. Sci. Eng., A, 2016, 649, p 369

    Article  Google Scholar 

  25. ASTM E209, Annual Book of ASTM Standards 201001-05

  26. D. Ponge and G. Gottstein, Necklace Formation During Dynamic Recrystallization: Mechanisms and Impact on Flow Behavior, Acta Mater., 1998, 46, p 69

    Article  Google Scholar 

  27. I. Gutierrez-Urrutia, S. Zaefferer, and D. Raabe, The Effect of Grain Size and Grain Orientation on Deformation Twinning in a Fe-22 wt.% Mn-0.6 wt.% C TWIP Steel, Mater. Sci. Eng., A, 2010, 527, p 3552

    Article  Google Scholar 

  28. L.A.I. Kestens and H. Pirgazi, Texture Formation in Metal Alloys With Cubic Crystal Structures, Mater. Sci. Technol., 2016, 32, p 1303

    Article  Google Scholar 

  29. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier Ltd, Oxford, 2004

    Google Scholar 

Download references

Acknowledgments

M. Eskandari is grateful to Professor Jerzy Szpunar for financial support to conduct this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Mohtadi-Bonab.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eskandari, M., Mohtadi-Bonab, M.A., Zarei-Hanzaki, A. et al. Effect of Hot Deformation on Texture and Microstructure in Fe-Mn Austenitic Steel During Compression Loading. J. of Materi Eng and Perform 27, 1555–1569 (2018). https://doi.org/10.1007/s11665-018-3273-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3273-2

Keywords

Navigation