Skip to main content
Log in

Deformation Behavior and Microstructure Evolution of the Cu-2Ni-0.5Si-0.15Ag Alloy During Hot Compression

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Hot deformation behavior of the Cu-2Ni-0.5Si-0.15Ag alloy was investigated by hot compression tests using the Gleeble-1500D thermo-simulator in the 873 K to 1073 K (600 °C to 800 °C) temperatures range with the 0.01 to 5 s−1 strain rate. The flow stress strongly depends on the deformation parameters, including temperature and strain rate. The flow stress decreases with the deformation temperature and increases with the strain rate. The constitutive relationship between the peak stress, the strain rate, and the deformation temperature can be described by the Zener–Hollomon Z parameter in the hyperbolic sine function with the hot deformation activation energy of 316 kJ/mol. The dynamic recrystallization (DRX) is one of the important softening mechanisms of the Cu-2Ni-0.5Si-0.15Ag alloy during hot deformation. The DRX behavior of the Cu-2Ni-0.5Si-0.15Ag alloy is strongly affected by the Z parameter. Lower Z parameter leads to more adequate DRX proceeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.T. Tran, M.H. Shirangi, X. Pang, A.A. Volinsky: Int. J. of Fract., 2013, vol. 185, pp. 115-127.

    Article  Google Scholar 

  2. P. Liu, B.X. Kang, X.G. Cao, J.L. Huang, B. Yen, H.C. Gu: Mater. Sci. Eng. A, 1999, vol. 265, pp.262-267.

    Article  Google Scholar 

  3. S. Bera, W. Lojkowsky, I. Manna: Metall. Mater. Trans. A, 2009, vol. 40, pp. 3276-3283.

    Article  Google Scholar 

  4. L. Zhang, Z. Li, Q. Lei, W.T. Qiu, H.T. Luo: Mater. Sci. Eng. A, 2011, vol. 528, pp. 1641-1647.

    Article  Google Scholar 

  5. S.W. Lee, H. Matsunaga, X. Sauvagec, Z.J. Horita: Mater. Charact., 2014, vol. 90, pp. 62-70.

    Article  Google Scholar 

  6. Z. Li, Z.Y. Pan, Y.Y. Zhao, Z. Xiao, M.P. Wang: J. Mater. Res., 2009, vol. 24, pp. 2123-2129.

    Article  Google Scholar 

  7. Y.Q. Long, P. Liu, Y. Liu, W.M. Zhang, J.S. Pan: Mater. Lett, 2008, vol. 62, pp. 3039-3042.

    Article  Google Scholar 

  8. H.S. Wang, H.G. Chen, J.W. Gu, C.E. Hsu, C.Y. Wu: Mater. Sci. Eng. A, 2014, vol. 619, pp.221-227.

    Article  Google Scholar 

  9. C.D. Xia, Y.L. Jia, W. Zhang, K. Zhang, Q.Y. Dong, G.Y. Xu, M. Wang: Mater. Des., 2012, vol. 39, pp. 404-409.

    Article  Google Scholar 

  10. Y.L. Jia, M.P. Wang, C. Chen, Q.Y. Dong, S. Wang, Z. Li: J. Alloys Compd., 2013, vol. 557, pp. 147-151.

    Article  Google Scholar 

  11. P. Hanzelka, V. Musilova, T. Kralik, J. Vonka: Cryogenics, 2010, vol. 50, pp. 737-742.

    Article  Google Scholar 

  12. S.G. Jia, M.S. Zheng, P. Liu, F.Z. Ren, B.H. Tian, G.S. Zhou, H.F. Lou: Mater. Sci. Eng. A, 2006, vol. 419, pp. 8-11.

    Article  Google Scholar 

  13. S. Suzuki, N. Shibutani, K. Mimura, M. Isshiki, Y. Waseda: J. Alloys Compd., 2006, vol. 417, pp. 116-120.

    Article  Google Scholar 

  14. M.G. Corson: Electrical World, 1927, vol. 89, pp.137-139.

    Google Scholar 

  15. C. Watanabe, S. Takeshita, R. Monzen: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 2469-2475.

    Article  Google Scholar 

  16. J.Y. Cheng, B.B. Tang, F.X. Yu, B. Shen: J. Alloys Compd., 2014, vol. 614, pp. 189-195.

    Article  Google Scholar 

  17. R.A.G. Silva, A. Paganotti, A.T. Adorno, C.M.A. Santos, T.M. Carvalho: J. Alloys Compd., 2015, vol. 643, pp. S178-S181.

    Article  Google Scholar 

  18. Y. Liu, S. Shaoa, K.M. Liu, X.J. Yang, D.P. Lu: Mater. Sci. Eng. A, 2012, vol. 531, pp.141-146.

    Article  Google Scholar 

  19. Y. Zhang, B.H. Tian, P. Liu, S.G. Jia, L. Fan, Y. Liu: Adv. Mater. Res., 2011, vol. 146-147, pp. 701-704.

    Article  Google Scholar 

  20. Y.V.R.K Prasad, K.P. Rao: Mater. Sci. Eng. A, 2012, vol. 487, pp.316-327.

    Article  Google Scholar 

  21. C. Zener, J.H. Hollomon: J. Appl. Phys., 1946, vol. 17, pp. 69-82.

    Article  Google Scholar 

  22. H. Farnoush, A. Momeni, K. Dehghani, J.A. Mohandesi, H. Keshmiri: Mater. Des., 2010, vol. 31, 220-226

    Article  Google Scholar 

  23. A. Momenia, H. Arabi, A. Rezaei, H. Badri, S.M. Abbasi: Mater. Sci. Eng. A, 2011, vol. 528, pp. 2158-2163.

    Article  Google Scholar 

  24. D.J. Li, Y.R. Feng, Z.F. Yin, F.S. Shangguan, K. Wang, Q. Liu, F. Hu: Mater. Des., 2012, vol. 34, 713-718.

    Article  Google Scholar 

  25. Y. Wang, W.Z. Shao, L. Zhen, B.Y. Zhang: Mater. Sci. Eng. A, 2011, vol. 528, pp. 3218-3227.

    Article  Google Scholar 

  26. W. Gao, A. Belyakov, H. Miura, T. Sakai: Mater. Sci. Eng. A, 1999, vol. 265, pp. 233-239.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51101052) and the National Science Foundation (1358088). The authors would like to thank an anonymous reviewer for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Zhang or Alex A. Volinsky.

Additional information

Manuscript submitted April 12, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Volinsky, A.A., Xu, QQ. et al. Deformation Behavior and Microstructure Evolution of the Cu-2Ni-0.5Si-0.15Ag Alloy During Hot Compression. Metall Mater Trans A 46, 5871–5876 (2015). https://doi.org/10.1007/s11661-015-3150-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3150-7

Keywords

Navigation