Skip to main content
Log in

Structure and electrochemical performances of Mg20−xYxNi10 (x = 0–4) alloys prepared by mechanical milling

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Mg2Ni-type Mg20−xYxNi10 (x = 0, 1, 2, 3 and 4) electrode alloys were fabricated by vacuum induction melting. Subsequently, the as-cast alloys were mechanically milled on a planetary-type ball mill. The effects of milling time and Y content on the microstructures and electrochemical performances of the alloys were investigated in detail. The results show that nanocrystalline and amorphous structure can be successfully obtained through mechanical milling. The substitution of Y for Mg facilitates the glass forming of the Mg2Ni-type alloy and significantly enhances the electrochemical characteristics of the alloy electrodes. Moreover, the discharge capacity of Y-free alloy monotonously grows with the milling time prolonging, while that of the Y-substituted alloys has the maximum values in the same case. The milling time of obtaining the greatest discharge capacity markedly decreases with Y content increasing. The electrochemical kinetics of the alloys, including high rate discharge ability (HRD), diffusion coefficient (D), limiting current density (IL) and charge transfer rate, monotonously increase with milling time extending.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Dibandjo P, Zlotea C, Gadiou R, Ghimbeu CM, Cuevas F, Latroche M, Leroy E, Vix-Guterl C. Hydrogen storage in hybrid nanostructured carbon/palladium materials: influence of particle size and surface chemistry. Int J Hydrogen Energy. 2013;38(2):952.

    Article  Google Scholar 

  2. Meng ZS, Lu RF, Rao DW, Kan E, Xiao CY, Deng KM. Catenated metal-organic frameworks: promising hydrogen purification materials and high hydrogen storage medium with further lithium doping. Int J Hydrogen Energy. 2013;38(23):9811.

    Article  Google Scholar 

  3. Jorge AM Jr, Prokofiev E, Ferreira de Lima G, Rauch E, Veron M, Botta WJ, Kawasaki M, Langdon TG. An investigation of hydrogen storage in a magnesium-based alloy processed by equal-channel angular pressing. Int J Hydrogen Energy. 2013;38(20):8306.

    Article  Google Scholar 

  4. Xie DH, Li P, Zeng CX, Sun JW, Qu XH. Effect of substitution of Nd for Mg on the hydrogen storage properties of Mg2Ni alloy. J Alloys Compd. 2009;478(1–2):96.

    Article  Google Scholar 

  5. Wang H, Zhang J, Liu JW, Ouyang LZ, Zhu M. Improving hydrogen storage properties of MgH2 by addition of alkali hydroxides. Int J Hydrogen Energy. 2013;38(20):10932.

    Article  Google Scholar 

  6. Zhu YF, Yang C, Zhu JY, Li LQ. Structural and electrochemical hydrogen storage properties of Mg2Ni-based alloys. J Alloys Compd. 2011;509(17):5309.

    Article  Google Scholar 

  7. Anik M, Akay I, Topcu S. Effect of electroless nickel coating on the electrochemical hydrogen storage characteristics of Al and Zr including Mg-based alloys. Int J Hydrogen Energy. 2009;34(13):5449.

    Article  Google Scholar 

  8. Liu ZP, Yang SQ, Li Y, Liu JJ, Ma MZ, Han SM. Phase structure and electrochemical performances of Co-free La–Mg–Ni-based alloys with Nd/Sm partial substitution for La. Rare Met. 2014;33(6):674.

    Article  Google Scholar 

  9. Kim JW, Ahn JP, Jin SA, Lee SH, Chung HS, Shim JH, Cho YW, Oh KH. Microstructural evolution of NbF5-doped MgH2 exhibiting fast hydrogen sorption kinetics. J Power Sources. 2008;178(1):373.

    Article  Google Scholar 

  10. Rivoirard S, de Rango P, Fruchart D, Charbonnier J, Vempaire D. Catalytic effect of additives on the hydrogen absorption properties of nano-crystalline MgH2(X) composites. J Alloys Compd. 2003;356–357:622.

    Article  Google Scholar 

  11. Wang Y, Qiao SZ, Wang X. Electrochemical hydrogen storage properties of ball-milled NdMg12 alloy with Ni powders. Int J Hydrogen Energy. 2008;33(3):1023.

    Article  Google Scholar 

  12. Hima Kumar L, Viswanathan B, Srinivasa Murthy S. Hydrogen absorption by Mg2Ni prepared by polyol reduction. J Alloys Compd. 2008;461(1–2):72.

    Article  Google Scholar 

  13. Ebrahimi-Purkani A, Kashani-Bozorg SF. Nanocrystalline Mg2Ni-based powders produced by high-energy ball milling and subsequent annealing. J Alloys Compd. 2008;456(1–2):211.

    Article  Google Scholar 

  14. Dornheim M, Doppiu S, Barkhordarian G, Boesenberg U, Klassen T, Gutfleisch O, Bormann R. Hydrogen storage in magnesium-based hydrides and hydride composites. Scr Mater. 2007;56(10):841.

    Article  Google Scholar 

  15. Teresiak A, Gebert A, Savyak M, Uhlemann M, Mickel C, Mattern N. In situ high temperature XRD studies of the thermal behaviour of the rapidly quenched Mg77Ni18Y5 alloy under hydrogen. J Alloys Compd. 2005;398(1–2):156.

    Article  Google Scholar 

  16. Ruggeri S, Roué L, Huot J, Schulz R, Aymard L, Tarascon JM. Properties of mechanically alloyed Mg–Ni–Ti ternary hydrogen storage alloys for Ni-MH batteries. J Power Sources. 2002;112(2):547.

    Article  Google Scholar 

  17. Aono K, Orimo S, Fujii H. Structural and hydriding properties of MgYNi4: a new intermetallic compound with C15b-type Laves phase structure. J Alloys Compd. 2000;309(1–2):L1.

    Article  Google Scholar 

  18. Zhang YH, Yang T, Shang HW, Zhao C, Xu C, Zhao DL. The electrochemical hydrogen storage characteristics of as-spun nanocrystalline and amorphous Mg20Ni10−xMx (M = Cu Co, Mn; x = 0–4) alloys. Rare Met. 2014;33(6):663.

    Article  Google Scholar 

  19. Zhang YH, Li C, Cai Y, Hu F, Liu ZC, Guo SH. Highly improved electrochemical hydrogen storage performances of the Nd–Cu–added Mg2Ni-type alloys by melt spinning. J Alloys Compd. 2014;584:81.

    Article  Google Scholar 

  20. Niua H, Northwood DO. Enhanced electrochemical properties of ball-milled Mg2Ni electrodes. Int J Hydrogen Energy. 2002;27(1):69.

    Article  Google Scholar 

  21. Tanaka K, Kanda Y, Furuhashi M, Saito K, Kuroda K, Saka H. Improvement of hydrogen storage properties of melt-spun Mg–Ni–RE alloys by nanocrystallization. J Alloys Compd. 1999;293–295:521.

    Article  Google Scholar 

  22. Spassov T, Lyubenova L, Köster U, Baró MD. Mg–Ni–RE nanocrystalline alloys for hydrogen storage. Mater Sci Eng A. 2004;375–377:794.

    Article  Google Scholar 

  23. Cui N, Luan B, Zhao HJ, Liu HK, Dou SX. Effects of yttrium additions on the electrode performance of magnesium-based hydrogen storage alloys. J Alloys Compd. 1996;233(1–2):236.

    Article  Google Scholar 

  24. Endo D, Sakaki K, Akiba E. Formation of lattice strain in MmNi4.30−xCoxAl0.30Mn0.40 (x = 0, 0.75) during hydrogenation. Int J Hydrogen Energy. 2007;32(17):4202.

    Article  Google Scholar 

  25. Zuttel A, Meli F, Schtapbach I. AB2 and AB5 metal hydride electrodes: a phenomenological model for the cycle life. J Alloys Compd. 1993;200(1–2):157.

    Article  Google Scholar 

  26. Zaluski L, Zaluska A, Strom-Olesen JO. Nanocrystalline metal hydrides. J Alloys Compd. 1997;253–254:70.

    Article  Google Scholar 

  27. Simičić MV, Zdujić M, Dimitrijević R, Nikolić-Bujanović L, Popović NH. Hydrogen absorption and electrochemical properties of Mg2Ni-type alloys synthesized by mechanical alloying. J Power Sources. 2006;158(1):730.

    Article  Google Scholar 

  28. Ren HP, Zhang YH, Li BW, Zhao DL, Guo SH, Wang XL. Influence of the substitution of La for Mg on the microstructure and hydrogen storage characteristics of Mg20−xLaxNi10 (x = 0–6) alloys. Int J Hydrogen Energy. 2009;34(3):1429.

    Article  Google Scholar 

  29. Gasiorowski A, Iwasieczko W, Skoryna D, Drulis H, Jurczyk M. Hydriding properties of nanocrystalline Mg2−xMxNi alloys synthesized by mechanical alloying (M = Mn, Al). J Alloys Compd. 2004;364(1–2):283.

    Article  Google Scholar 

  30. Wang ZM, Zhou HY, Gu ZF, Cheng G, Yu AB. Preparation of Mg2−xRExNi (RE = La, Ce, Pr, Nd, Y) alloys and their electrochemical characteristics. J Alloys Compd. 2004;381(1–2):234.

    Article  Google Scholar 

  31. Zhao XY, Ding Y, Ma LQ, Wang LY, Yang M, Shen XD. Electrochemical properties of MmNi3.8Co0.75Mn0.4Al0.2 hydrogen storage alloy modified with nanocrystalline nickel. Int J Hydrogen Energy. 2008;33(22):6727.

    Article  Google Scholar 

  32. Kuriyama N, Sakai T, Miyamura H, Uehara I, Ishikawa H, Iwasaki T. Electrochemical impedance and deterioration behavior of metal hydride electrodes. J Alloys Compd. 1993;202(1–2):183.

    Article  Google Scholar 

  33. Zheng G, Popov BN, White RE. Electrochemical determination of the diffusion coefficient of hydrogen through an LaNi4.25Al0.75 electrode in alkaline aqueous solution. J Electrochem Soc. 1995;142(8):2695.

    Article  Google Scholar 

  34. Ratnakumar BV, Witham C, Bowman RC Jr, Hightower A, Fultz B. Electrochemical studies on LaNi5−xSnx metal hydride alloys. J Electrochem Soc. 1996;143(8):2578.

    Article  Google Scholar 

  35. Wu Y, Han W, Zhou SX, Lototsky MV, Solberg JK, Yartys VA. Microstructure and hydrogenation behavior of ball-milled and melt-spun Mg–10Ni–2 Mm alloys. J Alloys Compd. 2008;466(1–2):176.

    Article  Google Scholar 

  36. Jafarian M, Azizi O, Gobal F, Mahjani MG. Kinetics and electrocatalytic behavior of nanocrystalline CoNiFe alloy in hydrogen evolution reaction. Int J Hydrogen Energy. 2007;32(12):1686.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundations of China (Nos. 51161015 and 51371094) and the State Key Laboratory of Advanced Metals and Materials (No. 2011-ZD06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-Huan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YH., Song, XP., Zhang, PL. et al. Structure and electrochemical performances of Mg20−xYxNi10 (x = 0–4) alloys prepared by mechanical milling. Rare Met. 38, 954–964 (2019). https://doi.org/10.1007/s12598-016-0727-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0727-2

Keywords

Navigation