Skip to main content
Log in

The electrochemical hydrogen storage characteristics of as-spun nanocrystalline and amorphous Mg20Ni10−x M x (M=Cu, Co, Mn; x = 0–4) alloys

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this paper, we comprehensively investigate the influences of M (M=Cu, Co, Mn) substitution for Ni on the structures and electrochemical hydrogen storage characteristics of the nanocrystalline and amorphous Mg20Ni10−x M x (M=Cu, Co, Mn; x = 0–4) alloys prepared by melt spinning. The as-spun (M=None, Cu) alloys display an entire nanocrystalline structure, whereas the as-spun (M=Co, Mn) alloys hold a mixed structure of both nanocrystalline and amorphous when x = 4 (M content). These results indicate that the substitution of M (M=Co, Mn) for Ni facilitates the glass formation in Mg2Ni-type alloy. All the as-spun alloys have the Mg2Ni major phase, but M (M=Co, Mn) substitution brings on some secondary phases, such as MgCo2, Mg phases for M=Co, and MnNi, Mg phases for M=Mn. The substitution of M (M=Cu, Co, Mn) for Ni also makes a positive contribution to the cycle stability of the alloys in the following orders: (M=Cu) > (M=Co) > (M=Mn) for x = 1 and (M=Co) > (M=Mn) > (M=Cu) for x = 2–4. Meanwhile, it notably enhances the discharge capacity of the alloys in the sequence of (M=Co) > (M=Mn) > (M=Cu). As for the high rate discharge ability, it visibly upgrades with the growing of M content for (M=Cu, Co), while it grows at first and then declines for (M=Mn).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jain IP. Hydrogen the fuel for 21st century. Int J Hydrogen Energy. 2009;34(17):368.

    Article  Google Scholar 

  2. Zhang YH, Yang T, Cai Y, Hou ZH, Ren HP, Zhao DL. Electrochemical hydrogen storage characteristics of La0.75−x M x Mg0.25Ni3.2Co0.2Al0.1 (M=Zr, Pr; x = 0, 0.1) alloys prepared by melt spinning. Rare Met. 2012;31(5):457.

    Article  Google Scholar 

  3. Ebrahimi-Purkani A, Kashani-Bozorg SF. Nanocrystalline Mg2Ni-based powders produced by high-energy ball milling and subsequent annealing. J Alloy Compd. 2008;456(1–2):211.

    Article  Google Scholar 

  4. Chandra D, Sharma A, Chellappa R, Cathey WN, Lynch FE, Bowman RC Jr, Wermer JR, Paglieri SN. Hydriding and structural characteristics of thermally cycled and cold-worked V–0.5at%C alloy. J Alloy Compd. 2008;452(2):312.

    Article  Google Scholar 

  5. Schlapbach L, Züttel A. Hydrogen-storage materials for mobile applications. Nature. 2001;414(15):353.

    Article  Google Scholar 

  6. Simičić MV, Zdujić M, Dimitrijević R, Nikolić-Bujanović Lj, Popović NH. Hydrogen absorption and electrochemical properties of Mg2Ni-type alloys synthesized by mechanical alloying. J Power Sources. 2006;158(1):730.

    Article  Google Scholar 

  7. Lass EA. Hydrogen storage measurements in novel Mg-based nanostructured alloys produced via rapid solidification and devitrification. Int J Hydrogen Energy. 2011;36(17):10787.

    Article  Google Scholar 

  8. Sakintuna B, Lamari-Darkrim F, Hirscher M. Metal hydride materials for solid hydrogen storage: a review. Int J Hydrogen Energy. 2007;32(9):1121.

    Article  Google Scholar 

  9. Khrussanova M, Mandzhukova T, Grigorova E, Khristov M, Peshev P. Hydriding properties of the nanocomposite 85 wt% Mg–15 wt% Mg2Ni0.8Co0.2 obtained by ball milling. J Mater Sci. 2007;42(10):3338.

    Article  Google Scholar 

  10. Xie L, Shao HY, Wang YT, Li Y, Li XG. Synthesis and hydrogen storing properties of nanostructured ternary Mg–Ni–Co compounds. Int J Hydrogen Energy. 2007;32(12):1949.

    Article  Google Scholar 

  11. Huang LJ, Liang GY, Sun ZB, Zhou YF. Nanocrystallization and hydriding properties of amorphous melt-spun Mg65Cu25Nd10 alloy. J Alloy Compd. 2007;432(1–2):172.

    Article  Google Scholar 

  12. Spassov T, Köster U. Thermal stability and hydriding properties of nanocrystalline melt-spun Mg63Ni30Y7 alloy. J Alloy Compd. 1998;279(2):279.

    Article  Google Scholar 

  13. Huang LJ, Liang GY, Sun ZB, Wu DC. Electrode properties of melt-spun Mg–Ni-–Nd amorphous alloys. J Power Sources. 2006;160(1):684.

    Article  Google Scholar 

  14. Zhang YH, Li BW, Ren HP, Ding XX, Liu XG, Chen LL. An investigation on hydrogen storage kinetics of nanocrystalline and amorphous Mg2Ni1−x Co x (x = 0–0.4) alloy prepared by melt spinning. J Alloy Compd. 2011;509(6):2808.

    Article  Google Scholar 

  15. Liang G, Boily S, Huot J, Neste AV, Schulz R. Mechanical alloying and hydrogen absorption properties of the Mg–Ni system. J Alloy Compd. 1998;267(1–2):302.

    Google Scholar 

  16. Kuriyama N, Sakai T, Miyamura H, Uehara I, Ishikawa H, Iwasaki T. Electrochemical impedance and deterioration behavior of metal hydride electrodes. J Alloy Compd. 1993;202(1–2):183.

    Article  Google Scholar 

  17. Zheng G, Popov BN, White RE. Electrochemical determination of the diffusion coefficient of hydrogen through an LaNi4.25Al0.75 electrode in alkaline aqueous solution. J Electrochem Soc. 1995;142(8):2695.

    Article  Google Scholar 

  18. Zhao XY, Ding Y, Ma LQ, Wang LY, Yang M, Shen XD. Electrochemical properties of MmNi3.8Co0.75Mn0.4Al0.2 hydrogen storage alloy modified with nanocrystalline nickel. Int J Hydrogen Energy. 2008;33(22):6727.

    Article  Google Scholar 

  19. Liu YF, Pan HG, Gao MX, Zhu YF, Lei YQ, Wang QD. The effect of Mn substitution for Ni on the structural and electrochemical properties of La0.7Mg0.3Ni2.55−x Co0.45Mn x hydrogen storage electrode alloys. Int J Hydrogen Energy. 2004;29(3):297.

    Article  Google Scholar 

  20. Zhang YH, Ren HP, Ma ZH, Li X, Zhang GF, Zhao DL. Gaseous and electrochemical hydrogen storage kinetics of as-spun nanocrystalline Mg2Ni1−x Cu x (x = 0–0.4) alloys. Chin J Mater Res. 2011;25(4):373.

    Google Scholar 

  21. Dornheim M, Doppiu S, Barkhordarian G, Boesenberg U, Klassen T, Gutfleisch O, Bormann R. Hydrogen storage in magnesium-based hydrides and hydride composites. Scr Mater. 2007;56(10):841.

    Article  Google Scholar 

  22. Zhang YH, Liu ZC, Li BW, Ma ZH, Guo SH, Wang XL. Structure and electrochemical performances of Mg2Ni1−x Mn x (x = 0–0.4) electrode alloys prepared by melt spinning. Electrochim Acta. 2010;56(1):427.

    Article  Google Scholar 

  23. Wu MS, Wu HR, Wang YY, Wan CC. Surface treatment for hydrogen storage alloy of nickel/metal hydride battery. J Alloy Compd. 2000;302(1–2):248.

    Article  Google Scholar 

  24. Xie DH, Li P, Zeng CX, Sun JW, Qu XH. Effect of substitution of Nd for Mg on the hydrogen storage properties of Mg2Ni alloy. J Alloy Compd. 2009;478(1–2):96.

    Article  Google Scholar 

  25. Song MY, Kwon SN, Bae JS, Hong SH. Hydrogen-storage properties of Mg-23.5Ni-(0 and 5) Cu prepared by melt spinning and crystallization heat treatment. Int J Hydrogen Energy. 2008;33(6):1711.

    Article  Google Scholar 

  26. Ratnakumar BV, Witham C, Bowman RC Jr, Hightower A, Fultz B. Electrochemical studies on LaNi5−x Sn x metal hydride alloys. J Electrochem Soc. 1996;143(8):2578.

    Article  Google Scholar 

  27. Kleperis J, Wójcik G, Czerwinski A, Skowronski J, Kopczyk M, Beltowska-Brzezinska M. Electrochemical behavior of metal hydrides. J Solid State Electrochem. 2001;5(4):229.

    Article  Google Scholar 

  28. Nobuhara K, Kasai H, Dino WA, Nakanishi H. H2 dissociative adsorption on Mg, Ti, Ni, Pd and La surfaces. Surf Sci. 2004;566–568(20):703.

    Article  Google Scholar 

  29. Feng F, Han J, Geng M, Northwood DO. Study of hydrogen transport in metal hydride electrodes using a novel electrochemical method. J Electroanal Chem. 2000;487(2):111.

    Article  Google Scholar 

  30. Zhao XY, Ding Y, Yang M, Ma LQ. Effect of surface treatment on electrochemical properties of MmNi3.8Co0.75Mn0.4Al0.2 hydrogen storage alloy. Int J Hydrogen Energy. 2008;33(1):81.

    Article  Google Scholar 

  31. Feng F, Northwood DO. Hydrogen diffusion in the anode of Ni/MH secondary batteries. J Power Sources. 2004;136(2):346.

    Article  Google Scholar 

  32. Cui N, Luo JL. Electrochemical study of hydrogen diffusion behavior in Mg2Ni-type hydrogen storage alloy electrodes. Int J Hydrogen Energy. 1999;24(1):37.

    Article  Google Scholar 

  33. Liang GX, Wang E, Fang SS. Hydrogen absorption and desorption characteristics of mechanically milled Mg–35 wt% FeTi1.2 powders. J Alloy Compd. 1995;223(1):111.

    Article  Google Scholar 

  34. Zhang YH, Zhao DL, Li BW, Ren HP, Guo SH, Wang XL. Electrochemical hydrogen storage characteristics of nanocrystalline Mg20Ni10−x Cu x (x = 0–4) alloys prepared by melt-spinning. J Alloy Compd. 2010;491(1–2):589.

    Article  Google Scholar 

  35. Drenchev B, Spassov T, Radev D. Influence of alloying and microstructure on the electrochemical hydriding of TiNi-based ternary alloys. J Appl Electrochem. 2007;38(4):437.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundations of China (No. 51161015), and the Natural Science Foundation of Inner Mongolia, China (Nos. 2011ZD10 and 2010ZD05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-Huan Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, YH., Yang, T., Shang, HW. et al. The electrochemical hydrogen storage characteristics of as-spun nanocrystalline and amorphous Mg20Ni10−x M x (M=Cu, Co, Mn; x = 0–4) alloys. Rare Met. 33, 663–673 (2014). https://doi.org/10.1007/s12598-013-0051-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-013-0051-z

Keywords

Navigation