Skip to main content
Log in

Phase structure and electrochemical performances of Co-free La–Mg–Ni-based alloys with Nd/Sm partial substitution for La

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this paper, the Co-free hydrogen storage alloys with the nominal compositions of La0.75R0.05Mg0.20Ni3.40Al0.10 (R = La, Nd and Sm) were prepared by induction melting, and then the phase structure and electrochemical properties of these alloys were comparatively investigated. It is found that the alloys mainly consist of (La, Mg)2Ni7 phase, LaNi5 phase and (La, Mg)5Ni19 phase. Refinement results further show that Nd substitution for La remarkably promotes the formation of LaNi5 phase, while Sm is beneficial for the formation of (La, Mg)5Ni19 phase. At discharge current density of 1,875 mA·g−1, the high-rate dischargeability (HRD) of alloy electrodes increases by 13.9 % and 6.5 % with La substituted by Nd and Sm, respectively. The electrochemical kinetic measurements reveal that the exchange current density (I 0), charge transfer resistance (R) and hydrogen diffusion coefficient (D) for the alloy electrode are all facilitated with Nd and Sm partial substitution for La. Subsequently, a linear correlation between the HRD 1875 and the corresponding I 0/D is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kohno T, Yoshida H, Kawashima F, Inaba T, Sakai I, Yamamoto M, Kanda M. Hydro storage properties of new ternary system alloys: La2MgNi9, La5Mg2Ni23, La3MgNi14. J Alloy Compd. 2000;311(2):L5.

    Article  Google Scholar 

  2. Pan HG, Liu YF, Gao MX, Zhu YF, Lei YQ, Wang QD. A study on the effect of annealing treatment on the electrochemical properties of La0.67Mg0.33Ni2.5Co0.5 alloy electrodes. Int J Hydrog Energy. 2003;28(1):113.

    Article  Google Scholar 

  3. Li M, Zhu L, Yu HJ, Jian XY. Heat-treatment of La–Mg–Ni-based A5B19-type hydrogen storage alloys. Chin J Rare Met. 2012;36(2):236.

    Google Scholar 

  4. Liu YF, Pan HG, Gao MX, Wang QD. Advanced hydrogen storage alloys for Ni/MH rechargeable batteries. J Mater Chem. 2011;21(13):4743.

    Article  Google Scholar 

  5. Liu YF, Cao YH, Huang L, Gao MX, Pan HG. Rare earth–Mg–Ni-based hydrogen storage alloys as negative electrode materials for Ni/MH batteries. J Alloy Compd. 2011;509(3):675.

    Article  Google Scholar 

  6. Dong ZW, Ma LQ, Wu YM, Wang LM, Shen XD. Microstructure and electrochemical hydrogen storage characteristics of (La0.7Mg0.3)1−x Ce x Ni2.8Co0.5 (x = 0–0.20) electrode alloys. Int J Hydrog Energy. 2011;36(4):3016.

    Article  Google Scholar 

  7. Pan HG, Ma S, Shen J, Tan JJ, Deng JL, Gao MX. Effect of the substitution of Pr for La on the microstructure and electrochemical properties of La0.7−x Pr x Mg0.3Ni2.45Co0.75Mn0.1Al0.2 (x = 0.0–0.3) hydrogen storage electrode alloys. Int J Hydrog Energy. 2007;32(14):2949.

    Article  Google Scholar 

  8. Zhang SC, Luo YC, Zeng SP, Wang K, Kang L. Influence of magnesium content on self-discharge property of A2B7-type RE–Mg–Ni hydrogen storage alloys. Chin J Rare Met. 2013;37(4):511.

    Google Scholar 

  9. Pan HG, Yue YJ, Gao MX, Wu XF, Chen N, Lei YQ, Wang QD. The effect of substitution of Zr for La on the electrochemical properties of La0.7−x Zr x Mg0.3Ni2.45Mn0.1Co0.75Al0.2 hydrogen storage electrode alloys. J Alloy Compd. 2005;397(1–2):269.

    Article  Google Scholar 

  10. Jiang WQ, Lan ZQ, Xu LQ, Li GX, Guo J. A study on the hydrogen storage properties of La2−x Ti x MgNi9 (x = 0.1, 0.2, 0.3, 0.4) alloys. Int J Hydrog Energy. 2009;34(11):4827.

    Article  Google Scholar 

  11. Li Y, Han SM, Li JH, Zhu XL, Hu L. The effect of Nd content on the electrochemical properties of low-Co La–Mg–Ni-based hydrogen storage alloys. J Alloy Compd. 2008;458(1):357.

    Article  Google Scholar 

  12. Ma S, Gao MX, Li R, Pan HG, Lei YQ. A study on the structural and electrochemical properties of La0.7−x Nd x Mg0.3Ni2.45Co0.75−Mn0.1Al0.2 (x = 0.0–3.0) hydrogen storage alloys. J Alloy Compd. 2008;457(1–2):457.

    Article  Google Scholar 

  13. Zhou ZL, Song YQ, Cui S, Lin CG, Qu XH. Effects of substitution of Nd for La on properties of La–Mg–Ni system A2B7-type hydrogen storage electrode alloys. Chin J Nonferrous Met. 2007;17(1):45.

    Article  Google Scholar 

  14. Zhu W, Tan C, Xu JB, Li ZX. Effect of Ni substitution for Co on the electrochemical properties of La0.75Mg0.25Ni2.7+x Co0.4−x Mn0.1Al0.3 (x = 0–0.4) hydrogen storage alloys synthesized by chemical co-precipitation plus reduction method. J Electro chem Soc. 2014;161(1):A89.

    Article  Google Scholar 

  15. Zhang P, Liu YN, Zhu JW, Wei XD, Yu G. Effect of Al and W substitution for Ni on the microstructure and electrochemical properties of La1.3CaMg0.7Ni9−x (Al0.5W0.5) x hydrogen storage alloys. Int J Hydrog Energy. 2007;32(13):2488.

    Article  Google Scholar 

  16. Zhao Y, Gao MX, Liu YF, Huang L, Pan HG. The correlative effects of Al and Co on the structure and electrochemical properties of a La–Mg–Ni-based hydrogen storage electrode alloy. J Alloy Compd. 2010;496(1):454.

    Article  Google Scholar 

  17. Zhang YH, Ren HP, Yang T, Zhao C, Chen LC, Shang HW, Zhao DL. Electrochemical performances of as-cast and annealed La0.8−x Nd x Mg0.2−Ni3.35Al0.1Si0.05 (x = 0–0.4) alloys applied to Ni/metal hydride (MH) battery. Rare Met. 2013;32(2):150.

    Article  Google Scholar 

  18. Lin YF, Dong XP, Zhao HH, Guo PP, Zhao DL. Electrochemical and EIS study of La0.65RE0.10Mg0.25Ni3.5Si0.15 (RE = La, Ce, Pr, Nd, Sm) hydrogen storage alloys. Chin Rare Earths. 2011;5(2011):008.

    Google Scholar 

  19. Tang R, Wei XD, Liu YN, Zhu CC, Zhua JW, Yu G. Effect of the Sm content on the structure and electrochemical properties of La1.3−x Sm x CaMg0.7Ni9 (x = 0–0.3) hydrogen storage alloys. J Power Sources. 2006;155(2):456.

    Article  Google Scholar 

  20. Li P, Hou ZH, Yang T, Shang HW, Qu XH, Zhang YH. Structure and electrochemical hydrogen storage characteristics of the as-cast and annealed La0.8−x Sm x Mg0.2Ni3.15Co0.2Al0.1Si0.05 (x = 0–0.4) alloys. J Rare Earths. 2012;30(7):696.

    Article  Google Scholar 

  21. Zhang YH, Hou ZH, Li BW, Ren HP, Zhang GF, Zhao DL. An investigation on electrochemical hydrogen storage performances of the as-cast and -annealed La0.8 −x Sm x Mg0.2Ni3.35Al0.1Si0.05 (x = 0–0.4) alloys. J Alloy Compd. 2012;537(1):175.

    Article  Google Scholar 

  22. Zhang XB, Sun DZ, Yin WY, Chai YJ, Zhao MS. Crystallographic and electrochemical characteristics of La0.7Mg0.3Ni3.5−x (Al0.5Mo0.5) x (x = 0–0.8) hydrogen storage alloys. J Power Sources. 2006;154(1):290.

    Article  Google Scholar 

  23. Yang SQ, Han SM, Li Y, Liu JJ. Study on the microstructure and electrochemical kinetic properties of MmNi4.50−x Mn x Co0.45Al0.30 (0.25 ≤ x ≤ 0.45) hydrogen storage alloys. Mater Sci Eng B. 2013;178(1):39.

    Article  Google Scholar 

  24. Notten PHL, Hokkeling P. Double-phase hydride forming compounds: a new class of highly electrocatalytic materials. J Electrochem Soc. 1991;138(7):1877.

    Article  Google Scholar 

  25. Kuriyama N, Sakai T, Miyamura H, Uehara I, Ishikawa H, Iwasaki T. Electrochemical impedance spectra and deterioration mechanism of metal hydride electrodes. J Electrochem Soc. 1992;139(7):L72.

    Article  Google Scholar 

  26. Kuriyama N, Sakai T, Miyamura H, Uehara I, Ishikawa H. Electrochemical impedance and deterioration behavior of metal hydride electrodes. J Alloy Compd. 1993;202(1):183.

    Article  Google Scholar 

  27. Zheng G, Popov BN, White RE. Electrochemical determination of the diffusion coefficient of hydrogen through an LaNi4.25Al0.75 electrode in alkaline aqueous solution. J Electrochem Soc. 1995;142(8):2695.

    Article  Google Scholar 

  28. Iwakura C, Miyamoto M, Inoue H, Matsuoka M, Fukumoto Y. Effect of stoichiometric ratio on discharge efficiency of hydrogen storage alloy electrodes. J Alloy Compd. 1997;259(1):132.

    Article  Google Scholar 

  29. Liu BZ, Hu MJ, Ji LQ, Fan YP, Wang YG, Zhang Z, Li AM. Phase structure and electrochemical properties of La0.7Ce0.3Ni3.75-Mn0.35Al0.15Cu0.75−x (Fe0.43B0.57) x hydrogen storage alloys. J Alloy Compd. 2012; 516(1):63.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51171165 and 21303157), the Natural Science Foundation of Hebei Province (Nos. B2012203027, B2012203104, and B2014203114), the China Postdoctoral Science Foundation Project (No. 2013M541201), and the Research Fund for the Doctoral Program of Higher Education of China (No. 20131333120008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Min Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, ZP., Yang, SQ., Li, Y. et al. Phase structure and electrochemical performances of Co-free La–Mg–Ni-based alloys with Nd/Sm partial substitution for La. Rare Met. 33, 674–680 (2014). https://doi.org/10.1007/s12598-014-0401-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-014-0401-5

Keywords

Navigation