Skip to main content
Log in

Properties of Mechanically Milled Nanocrystalline and Amorphous Mg–Y–Ni Electrode Alloys for Ni–MH Batteries

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Nanocrystalline and amorphous Mg2Ni-type Mg20−x Y x Ni10 (x = 0, 1, 2, 3 and 4) electrode alloys were fabricated using mechanical milling. The effects of the Y content and milling time on the microstructures and electrochemical performances of the alloys were investigated in detail. X-ray diffraction and transmission electron microscopy analyses revealed that the substitution of Y for Mg yields an obvious change in the phase composition and micro morphology of the alloys. When the Y content x ≤ 1, the substitution of Y for Mg does not change the major phase Mg2Ni, but with a further increase in the Y content, the major phase of the alloys transforms into the YMgNi4 + YMg3 phase. A nanocrystalline and amorphous structure can be obtained by mechanical milling, and the amorphisation degree of the alloy visibly increases with increased milling time. Electrochemical measurements indicate that the discharge capacity of the alloys first increases and then decreases with increasing Y content and milling time. The substitution of Y for Mg dramatically ameliorates the cycle stability of the as-milled alloys, and the mechanical milling more or less impairs the cycle stability of the alloys. Furthermore, the high rate discharge ability, electrochemical impedance spectrum, Tafel polarisation curves and potential step measurements indicate that the electrochemical kinetic properties of the as-milled alloys first increase and then decrease with increasing Y content and milling time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Nejat, S. Şahin, Energy Convers. Manag. 49, 1820 (2008)

    Article  Google Scholar 

  2. H. Wang, A.K. Prasad, S.G. Advani, Int. J. Hydrog. Energy 37, 290 (2012)

    Article  Google Scholar 

  3. H.G. Huang, R. Li, T.W. Liu, L. Chen, D.L. Luo, Acta Metall. Sin. (Engl. Lett.) 23, 446 (2010)

    Google Scholar 

  4. L.Z. Ouyang, Z.J. Cao, H. Wang, J.W. Liu, D.L. Sun, Q.A. Zhang, M. Zhu, J. Alloys Compd. 586, 113 (2014)

    Article  Google Scholar 

  5. A. Ebrahimi-Purkani, S.F. Kashani-Bozorg, J. Alloys Compd. 456, 211 (2008)

    Article  Google Scholar 

  6. L. Schlapbach, A. Züttel, Nature 414, 353 (2001)

    Article  Google Scholar 

  7. L.Z. Ouyang, Z.J. Cao, H. Wang, J.W. Liu, D.L. Sun, Q.A. Zhang, M. Zhu, Int. J. Hydrog. Energy 38, 8881 (2013)

    Article  Google Scholar 

  8. M.Y. Song, Y.J. Kwak, H.S. Shin, S.H. Lee, B.G. Kim, Int. J. Hydrog. Energy 38, 1910 (2013)

    Article  Google Scholar 

  9. M. Anik, I. Akay, S. Topcu, Int. J. Hydrog. Energy 34, 5449 (2009)

    Article  Google Scholar 

  10. L.Z. Ouyang, Z.J. Cao, L.L. Li, H. Wang, J.W. Liu, D. Min, Y.W. Chen, F.M. Xiao, R.H. Tang, M. Zhu, Int. J. Hydrog. Energy 39, 12765 (2014)

    Article  Google Scholar 

  11. Y.H. Jia, S.M. Han, W. Zhang, X. Zhao, P.F. Sun, Y.Q. Liu, H. Shi, J.S. Wang, Int. J. Hydrog. Energy 38, 2352 (2013)

    Article  Google Scholar 

  12. R. Ohara, C.H. Lan, C.S. Hwang, J. Alloys Compd. 580, S368 (2013)

    Article  Google Scholar 

  13. Y. Wang, S.Z. Qiao, X. Wang, Int. J. Hydrog. Energy 33, 1023 (2008)

    Article  Google Scholar 

  14. L. Hima Kumar, B. Viswanathan, S. Srinivasa Murthy, J. Alloys Compd. 461, 72 (2008)

    Article  Google Scholar 

  15. A. Teresiak, A. Gebert, M. Savyak, M. Uhlemann, C. Mickel, N. Mattern, J. Alloys Compd. 398, 156 (2005)

    Article  Google Scholar 

  16. S. Ruggeri, L. Roué, J. Huot, R. Schulz, L. Aymard, J.M. Tarascon, J. Power Sources 112, 547 (2002)

    Article  Google Scholar 

  17. Y.H. Zhang, C. Zhao, T. Yang, H.W. Shang, C. Xu, D.L. Zhao, J. Alloys Compd. 555, 131 (2013)

    Article  Google Scholar 

  18. Y.H. Zhang, C. Li, Y. Cai, F. Hu, Z.C. Liu, S.H. Guo, J. Alloys Compd. 584, 81 (2014)

    Article  Google Scholar 

  19. M. Mezbahul-Islam, M. Medraj, Calphad 33, 478 (2009)

    Article  Google Scholar 

  20. H. Niua, D.O. Northwood, Int. J. Hydrog. Energy 27, 69 (2002)

    Article  Google Scholar 

  21. X.Y. Zhao, Y. Ding, L.Q. Ma, L.Y. Wang, M. Yang, X.D. Shen, Int. J. Hydrog. Energy 33, 6727 (2008)

    Article  Google Scholar 

  22. G. Zheng, B.N. Popov, R.E. White, J. Electrochem. Soc. 142, 2695 (1995)

    Article  Google Scholar 

  23. N. Kuriyama, T. Sakai, H. Miyamura, I. Uehara, H. Ishikawa, T. Iwasaki, J. Alloys Compd. 202, 183 (1993)

    Article  Google Scholar 

  24. W.H. Lai, C.Z. Yu, Battery Bimon. 26, 189 (1996)

    Google Scholar 

  25. E.A. Lass, Int. J. Hydrog. Energy 36, 10787 (2011)

    Article  Google Scholar 

  26. L.Z. Ouyang, Z.J. Cao, L. Yao, H. Wang, J.W. Liu, M. Zhu, Int. J. Hydrog. Energy 39, 13616 (2014)

    Article  Google Scholar 

  27. K. Tanaka, Y. Kanda, M. Furuhashi, K. Saito, K. Kuroda, H. Saka, J. Alloys Compd. 295, 521 (1999)

    Article  Google Scholar 

  28. T. Spassov, L. Lyubenova, U. Köster, M.D. Baró, Mater. Sci. Eng., A 375–377, 794 (2004)

    Article  Google Scholar 

  29. Y.H. Zhang, H.T. Wang, X.P. Dong, W.G. Bu, Z.M. Yuan, G.F. Zhang, Acta Metall. Sin. (Engl. Lett.) 27, 1088 (2014)

    Article  Google Scholar 

  30. N. Cui, B. Luan, H.J. Zhao, H.K. Liu, S.X. Dou, J. Alloys Compd. 233, 236 (1996)

    Article  Google Scholar 

  31. A. Züttel, F. Meli, L. Schtapbach, J. Alloys Compd. 200, 157 (1993)

    Article  Google Scholar 

  32. L. Zaluski, A. Zaluska, J.O. Ström-Olsen, J. Alloys Compd. 253–254, 70 (1997)

    Article  Google Scholar 

  33. C. Lenain, L. Aymard, L. Dupont, J. Tarascon, J. Alloys Compd. 292, 84 (1999)

    Article  Google Scholar 

  34. H.P. Ren, Y.H. Zhang, B.W. Li, D.L. Zhao, S.H. Guo, X.L. Wang, Int. J. Hydrog. Energy 34, 1429 (2009)

    Article  Google Scholar 

  35. M.V. Simičić, M. Zdujić, R. Dimitrijević, L. Nikolić-Bujanović, N.H. Popović, J. Power Sources 158, 730 (2006)

    Article  Google Scholar 

  36. B.V. Ratnakumar, C. Witham, R.C. Bowman Jr, A. Hightower, B. Fultz, J. Electrochem. Soc. 143, 2578 (1996)

    Article  Google Scholar 

  37. F. Feng, J. Han, M. Geng, D.O. Northwood, J. Electroanal. Chem. 487, 111 (2000)

    Article  Google Scholar 

  38. N. Cui, J.L. Luo, Int. J. Hydrog. Energy 24, 37 (1999)

    Article  Google Scholar 

  39. Y.H. Zhang, Z.C. Liu, B.W. Li, Z.H. Ma, S.H. Guo, X.L Wang. Electrochim. Acta 56, 427 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51161015 and 51371094).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-Huan Zhang.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YH., Yuan, ZM., Yang, T. et al. Properties of Mechanically Milled Nanocrystalline and Amorphous Mg–Y–Ni Electrode Alloys for Ni–MH Batteries. Acta Metall. Sin. (Engl. Lett.) 28, 826–836 (2015). https://doi.org/10.1007/s40195-015-0266-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-015-0266-0

Keywords

Navigation