Skip to main content

Advertisement

Log in

Detection of Norovirus Recombinant GII.2[P16] Strains in Oysters in Thailand

  • Original Paper
  • Published:
Food and Environmental Virology Aims and scope Submit manuscript

Abstract

Human norovirus causes sporadic and epidemic acute gastroenteritis worldwide, and the predominant strains are genotype GII.4 variants. Recently, a novel GII.17[P17] and a recombinant GII.2[P16] strain have been reported as the causes of gastroenteritis outbreaks. Outbreaks of norovirus are frequently associated with foodborne illness. In this study, each of 75 oyster samples processed by a proteinase K extraction method and an adsorption-elution method were examined for noroviruses using RT-nested PCR with capsid primers. Thirteen (17.3%) samples processed by either method tested positive for norovirus genogroup II (GII). PCR amplicons were characterized by DNA sequencing and phylogenetic analysis as GII.2 (n = 6), GII.4 (n = 1), GII.17 (n = 3), and GII.unclassified (n = 3). Norovirus-positive samples were further amplified by semi-nested RT-PCR targeting the polymerase-capsid genes. One nucleotide sequence revealed GII.17[P17] Kawasaki strain. Five nucleotide sequences were identified as belonging to the recombinant GII.2[P16] strains by recombination analysis. The collected oyster samples were quantified for norovirus GII genome copy number by RT-quantitative PCR. Using the proteinase K method, GII was found in 13/75 (17.3%) of samples with a range of 8.83–1.85 × 104 genome copies/g of oyster. One sample (1/75, 1.3%) processed by the adsorption-elution method was positive for GII at 5.00 × 101 genome copies/g. These findings indicate the circulation of a new variant GII.17 Kawasaki strain and the recombinant GII.2[P16] in oyster samples corresponding to the circulating strains reported at a global scale during the same period of time. The detection of the recombinant strains in oysters emphasizes the need for continuing systematic surveillance for control and prevention of norovirus gastroenteritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmed, K., Dony, J. J. F., Mori, D., Haw, L. Y., Giloi, N., Jeffree, M. S., & Iha, H. (2020). An outbreak of gastroenteritis by emerging norovirus GII.2[P16] in a kindergarten in Kota Kinabalu, Malaysian Borner. Scientific Report, 10(1), 7137. https://doi.org/10.1038/s41598-020-64148-4

    Article  CAS  Google Scholar 

  • Ahmed, S. M., Hall, A. J., Robinson, A. E., Verhoef, L., Premkumar, P., Parashar, U. D., Koopmans, M., & Lopman, B. A. (2014). Global prevalence of norovirus in cases of gastroenteritis: a systematic review and meta-analysis. The Lancet Infectious Diseases, 14(8), 725–730.

    Article  Google Scholar 

  • Anonymous. (2017). Microbiology of the food chain—Horizontal method for determination of hepatitis A virus and norovirus using real-time RT-PCR—Part 1: Method for quantification. ISO 15216–1:2017. Geneva: International Organization for Standardization.

  • Chan, M. C., Lee, N., Hung, T. N., Kwok, K., Cheung, K., Tin, E. K., Lai, R. W., Nelson, E. A., Leung, T. F., & Chan, P. K. (2015). Rapid emergence and predominance of a broadly recognizing and fast-evolving norovirus GII.17 variant in late 2014. Nature Communications, 6, 10061. https://doi.org/10.1038/ncomms10061

    Article  CAS  PubMed  Google Scholar 

  • Chan, M. C. W., Hu, Y., Chen, H., Podkolzin, A. T., Zaytseva, E. V., Komano, J., Sakon, N., Poovorawan, Y., Vongpunsawad, S., Thanusuwannasak, T., Hewitt, J., Croucher, D., Collins, N., Vinjé, J., Pang, X. L., Lee, B. E., de Graaf, M., van Beek, J., Vennema, H., … Chan, P. K. S. (2017). Global spread of norovirus GII17 Kawasaki 308, 2014–2016. Emerging Infectious Diseases, 23(8), 1359–1354.

    Article  Google Scholar 

  • Chhabra, P., de Graaf, M., Parra, G. I., Chan, M. C. W., Green, K., Martella, V., Wang, Q., White, P. A., Katayama, K., Vennema, H., Koopmans, M. P. G., & Vinjé, J. (2019). Updated classification of norovirus genogroups and genotypes. Journal of General Virology, 100(10), 1393–1406. https://doi.org/10.1099/jgv.0.001318

    Article  CAS  Google Scholar 

  • Chuchaona, W., Chansaenroj, J., Wanlapakorn, N., Vongpunsawad, S., & Poovorawan, Y. (2019). Recombinant GII.Pe-GII.4 norovirus, Thailand, 2017–2018. Emerging Infectious Diseases, 25(8), 1612–1614. https://doi.org/10.3201/eid2508.190365

    Article  PubMed  PubMed Central  Google Scholar 

  • da Silva, A. K., Le Saux, J. C., Parnaudeau, S., Pommepuy, M., Elimelech, M., & Le Guyader, F. S. (2007). Evaluation of removal of noroviruses during wastewater treatment, using real-time reverse transcription-PCR: Different behaviors of genogroups I and II. Applied and Environmental Microbiology, 73(24), 7891–7897. https://doi.org/10.1128/AEM.01428-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • da Silva Ribeiro de Andrade, J., Fumian, T. M., Leite, J. P. G., de Assis, M. R., Fialho, A. M., Mouta, S., Santiago, C., & Miagostovich, M. P. (2018). Norovirus GII.17 associated with a foodborne acute gastroenteritis outbreak in Brazil, 2016. Food and Environmental Virology, 10(2), 212–216. https://doi.org/10.1007/s12560-017-9326-0

    Article  CAS  PubMed  Google Scholar 

  • de Graaf, M., van Beek, J., Vennema, H., Podkolzin, A. T., Hewitt, J., Bucardo, F., Templeton, K., Mans, J., Nordgren, J., Reuter, G., Lynch, M., Rasmussen, L. D., Iritani, N., Chan, M. C., Martella, V., Ambert-Balay, K., Vinjé, J., White, P. A., & Koopmans, M. P. (2015). Emergence of a novel GII.17 norovirus – End of the GII.4 era? Eurosurveillance, 20(26), 21178. https://doi.org/10.2807/1560-7917.es2015.20.26.21178

    Article  PubMed  Google Scholar 

  • Guo, X. H., Kan, Z., Liu, B. W., & Li, L. L. (2018). A foodborne acute gastroenteritis outbreak caused by GII.P16-GII.2 norovirus in a boarding high school, Beijing, China: a case-control study. BMC Research Notes, 11(1), 439.

    Article  Google Scholar 

  • Imamura, S., Kanezashi, H., Goshima, T., Haruna, M., Okada, T., Inagaki, N., Uema, M., Noda, M., & Akimoto, K. (2017). Next-generation sequencing analysis of the diversity of human noroviruses in Japanese oysters. Foodborne Pathogenic Diseases, 14(8), 465–471. https://doi.org/10.1089/fpd.2017.2289

    Article  Google Scholar 

  • Kageyama, T., Kojima, S., Shinohara, M., Uchida, K., Fukushi, S., Hoshino, F. B., Takeda, N., & Katayama, K. (2003). Broadly reactive and highly sensitive assay for Norwalk-like viruses based on real-time quantitative reverse transcription-PCR. Journal of Clinical Microbiology, 41(4), 1548–1557. https://doi.org/10.1128/JCM.41.4.1548-1557.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khamrin, P., Kumthip, K., Yodmeeklin, A., Supadej, K., Ukarapol, N., Thongprachum, A., Okitsu, S., Hayakawa, S., Ushijima, H., & Maneekarn, N. (2016). Molecular characterization of norovirus GII.17 detected in healthy adult, intussusception patient, and acute gastroenteritis children in Thailand. Infection, Genetics and Evolution, 44, 330–333. https://doi.org/10.1016/j.meegid.2016.07.031

    Article  CAS  PubMed  Google Scholar 

  • Kittigul, L., Rupprom, K., Che-Arsae, M., Pombubpa, K., Thongprachum, A., Hayakawa, S., & Ushijima, H. (2019). Occurrence of noroviruses in recycled water and sewage sludge: Emergence of recombinant norovirus strains. Journal of Applied Microbiology, 126(4), 1290–1301. https://doi.org/10.1111/jam.14201

    Article  CAS  PubMed  Google Scholar 

  • Kiulia, N. M., Mans, J., Mwenda, J. M., & Taylor, M. B. (2014). Norovirus GII.17 predominates in selected surface water sources in Kenya. Food and Environmental Virology, 6(4), 221–231. https://doi.org/10.1007/s12560-014-9160-6

    Article  CAS  PubMed  Google Scholar 

  • Kojima, S., Kageyama, T., Fukushi, S., Hoshino, F. B., Shinohara, M., Uchida, K., Natori, K., Takeda, N., & Katayama, K. (2002). Genogroup-specific PCR primers for detection of Norwalk-like viruses. Journal of Virological Methods, 100(1–2), 107–114. https://doi.org/10.1016/s0166-0934(01)00404-9

    Article  CAS  PubMed  Google Scholar 

  • Kwok, K., Niendorf, S., Lee, N., Hung, T. N., Chan, L. Y., Jacobsen, S., Nelson, E. A. S., Leung, T. F., Lai, R. W. M., Chan, P. K. S., & Chan, M. C. W. (2017). Increased detection of emergent recombinant norovirus GIIP.16-GII.2 strains in young adults, Hong Kong, China, 2016–2017. Emerging Infectious Diseases, 23(11), 1852–1855. https://doi.org/10.3201/eid2311.170561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • La Rosa, G., Della Libera, S., Iaconelli, M., Proroga, Y. T. R., De Medici, D., Martella, V., & Suffredini, E. (2017). Detection of norovirus GII.17 Kawasaki 2014 in shellfish, marine water and underwater sewage discharges in Italy. Food and Environmental Virology, 9(3), 326–333. https://doi.org/10.1007/s12560-017-9290-8

    Article  CAS  PubMed  Google Scholar 

  • LeBlanc, J. J., Pettipas, J., Gaston, D., Taylor, R., Hatchette, T. F., Booth, T. F., Mandes, R., McDermid, A., & Grudeski, E. (2016). Outbreak of norovirus GIIP.17-GII.17 in the Canadian Province of Nova Scotia. Canadian Journal of Infectious Diseases and Medical Microbiology, 2016, 1280247. https://doi.org/10.1155/2016/1280247

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, L. T., Kuo, T. Y., Wu, C. Y., Liao, W. T., Hall, A. J., & Wu, F. T. (2017). Recombinant GIIP.16-GII.2 norovirus, Taiwan, 2016. Emerging Infectious Diseases, 23(7), 1180–1183. https://doi.org/10.3201/eid2307.170212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loisy, F., Atmar, R. L., Guillon, P., Le Cann, P., Pommepuy, M., & Le Guyader, F. S. (2005). Real-time RT-PCR for norovirus screening in shellfish. Journal of Virological Methods, 123(1), 1–7. https://doi.org/10.1016/j.jviromet.2004.08.023

    Article  CAS  PubMed  Google Scholar 

  • Lole, K. S., Bollinger, R. C., Paranjape, R. S., Gadkari, D., Kulkarni, S. S., Novak, N. G., Ingersoll, R., Sheppard, H. W., & Ray, S. C. (1999). Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. Journal of Virology, 73(1), 152–160. https://doi.org/10.1128/JVI.73.1.152-160.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowmoung, T., Pombubpa, K., Duangdee, T., Tipayamongkholgul, M., & Kittigul, L. (2017). Distribution of naturally occurring norovirus genogroups I, II, and IV in oyster tissues. Food and Environmental Virology, 9(4), 415–422. https://doi.org/10.1007/s12560-017-9305-5

    Article  CAS  PubMed  Google Scholar 

  • Lu, J., Fang, L., Sun, L., Zeng, H., Li, Y., Zheng, H., Wu, S., Yang, F., Song, T., Lin, J., Ke, C., Zhang, Y., Vinjé, J., & Li, H. (2017). Association of GIIP.16-GII.2 recombinant norovirus strain with increased norovirus outbreaks, Guangdong, China, 2016. Emerging Infectious Diseases, 23(7), 1188–1190. https://doi.org/10.3201/eid2307.170333

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu, J., Sun, L., Fang, L., Yang, F., Mo, Y., Lao, J., Zheng, H., Tan, X., Lin, H., Rutherford, S., Guo, L., Ke, C., & Hui, L. (2015). Gastroenteritis outbreaks caused by norovirus GII.17, Guangdong Province, China, 2014–2015. Emerging Infectious Diseases, 21(7), 1240–1242. https://doi.org/10.3201/eid2107.150226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin, D. P., Murrell, B., Golden, M., Khoosal, A., & Muhire, B. (2015). RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evolution, 1(1), vev003. https://doi.org/10.1093/ve/vev003

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsushima, Y., Ishikawa, M., Shimizu, T., Komane, A., Kasuo, S., Shinohara, M., Nagasawa, K., Kimura, H., Ryo, A., Okabe, N., Haga, K., Doan, Y. H., Katayama, K., & Shimizu, H. (2015). Genetic analyses of GII.17 norovirus strains in diarrheal disease outbreaks from December 2014 to March 2015 in Japan reveal a novel polymerase sequence and amino acid substitutions in the capsid region. Eurosurveillance, 20(26), 21173. https://doi.org/10.2807/1560-7917.es2015.20.26.21173

    Article  PubMed  Google Scholar 

  • Medici, M. C., Tummolo, F., Martella, V., De Conto, F., Arcangeletti, M. C., Pinardi, F., Ferraglia, F., Chezzi, C., & Calderaro, A. (2018). Emergence of novel recombinant GII.P16_GII.2 and GII.P16_GII.4 Sydney 2012 norovirus strains in Italy, winter 2016/2017. New Microbiologica, 41(1), 71–72.

    PubMed  Google Scholar 

  • Nagasawa, K., Matsushima, Y., Motoya, T., Mizukoshi, F., Ueki, Y., Sakon, N., Murakami, K., Shimizu, T., Okabe, N., Nagata, N., Shirabe, K., Shinomiya, H., Suzuki, W., Kuroda, M., Sekizuka, T., Ryo, A., Fujita, K., Oishi, K., Katayama, K., & Kimura, H. (2018). Phylogeny and immunoreactivity of norovirus GII.P16-GII.2, Japan, Winter 2016–2017. Emerging Infectious Diseases, 24(1), 144–148. https://doi.org/10.3201/eid2401.170284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niendorf, S., Jacobsen, S., Faber, M., Eis-Hübinger, A. M., Hofmann, J., Zimmermann, O., Höhne, M., & Bock, C. T. (2017). Steep rise in norovirus cases and emergence of a new recombinant strain GII.P16-GII.2, Germany, winter 2016. Eurosurveillance, 22(4), 30447. https://doi.org/10.2807/1560-7917.ES.2017.22.4.30447

    Article  PubMed  PubMed Central  Google Scholar 

  • Parra, G. I. (2019). Emergence of norovirus strains: A tale of two genes. Virus Evolution, 5(2), vez048. https://doi.org/10.1093/ve/vez048

    Article  PubMed  PubMed Central  Google Scholar 

  • Prevost, B., Lucas, F. S., Ambert-Balay, K., Pothier, P., Moulin, L., & Wurtzer, S. (2015). Deciphering the diversities of astroviruses and noroviruses in wastewater treatment plant effluents by a high-throughput sequencing method. Applied and Environmental Microbiology, 81(20), 7215–7222. https://doi.org/10.1128/AEM.02076-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pu, J., Kazama, S., Miura, T., Azraini, N. D., Konta, Y., Ito, H., Ueki, Y., Cahyaningrum, E. E., Omura, T., & Watanabe, T. (2016). Pyrosequencing analysis of norovirus genogroup II distribution in sewage and oysters: First detection of GII.17 Kawasaki 2014 in oysters. Food and Environmental Virology, 8(4), 310–312. https://doi.org/10.1007/s12560-016-9261-5

    Article  CAS  PubMed  Google Scholar 

  • Puustinen, L., Blazevic, V., Huhti, L., Szakal, E. D., Halkosalo, A., Salminen, M., & Vesikari, T. (2012). Norovirus genotypes in endemic acute gastroenteritis of infants and children in Finland between 1994 and 2007. Epidemiology and Infection, 140(2), 268–275. https://doi.org/10.1017/S0950268811000549

    Article  CAS  PubMed  Google Scholar 

  • Qin, M., Dong, X. G., Jing, Y. Y., Wei, X. X., Wang, Z. E., Feng, H. R., Yu, H., Li, J. S., & Li, J. (2016). A waterborne gastroenteritis outbreak caused by norovirus GII.17 in a Hotel, Hebei, China, December 2014. Food and Environmental Virology, 8(3), 180–186. https://doi.org/10.1007/s12560-016-9237-5

    Article  PubMed  Google Scholar 

  • Robilotti, E., Deresinski, S., & Pinsky, B. A. (2015). Norovirus. Clinical Microbiology Reviews, 28(1), 134–164. https://doi.org/10.1128/CMR.00075-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruis, C., Roy, S., Brown, J. R., Allen, D. J., Goldstein, R. A., & Breuer, J. (2017). The emerging GII.P16-GII.4 Sydney 2012 norovirus lineage is circulating worldwide, arose by late-2014 and contains polymerase changes that may increase virus transmission. PLoS ONE, 12(6), e0179572. https://doi.org/10.1371/journal.pone.0179572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rupprom, K., Chavalitshewinkoon-Petmitr, P., Diraphat, P., Vinje, J., & Kittigul, L. (2018). Development of one-step TaqMan quantitative RT-PCR assay for detection of norovirus genogroups I and II in oyster. The Southeast Asian Journal of Tropical Medicine and Public Health, 49(6), 1017–1028.

    Google Scholar 

  • Sakon, N., Sadamasu, K., Shinkai, T., Hamajima, Y., Yoshitomi, H., Matsushima, Y., Takada, R., Terasoma, F., Nakamura, A., Komano, J., Nagasawa, K., Shimizu, H., Katayama, K., & Kimura, H. (2018). Foodborne outbreaks caused by human norovirus GII.P17-GII.17-contaminated Nori, Japan, 2017. Emerging Infectious Diseases, 24(5), 920–923. https://doi.org/10.3201/eid2405.171733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarmento, S. K., Guerra, C. R., Malta, F. C., Coutinho, R., Miagostovich, M. P., & Fumian, T. M. (2020). Human norovirus detection in bivalve shellfish in Brazil and evaluation of viral infectivity using PMA treatment. Marine Pollution Bulletin, 157, 111315. https://doi.org/10.1016/j.marpolbul.2020.111315

    Article  CAS  PubMed  Google Scholar 

  • Siebenga, J. J., Vennema, H., Renckens, B., de Bruin, E., van der Veer, B., Siezen, R. J., & Koopmans, M. (2007). Epochal evolution of GGII.4 norovirus capsid proteins from 1995 to 2006. Journal of Virology, 81(18), 9932–9941. https://doi.org/10.1128/JVI.00674-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Supadej, K., Khamrin, P., Kumthip, K., Malasao, R., Chaimongkol, N., Saito, M., Oshitani, H., Ushijima, H., & Maneekarn, N. (2019). Distribution of norovirus and sapovirus genotypes with emergence of NoV GII.P16/GII.2 recombinant strains in Chiang Mai, Thailand. Journal of Medical Virology, 91(2), 215–224. https://doi.org/10.1002/jmv.25261

    Article  CAS  PubMed  Google Scholar 

  • Svraka, S., Duizer, E., Vennema, H., de Bruin, E., van der Veer, B., Dorresteijn, B., & Koopmans, M. (2007). Etiological role of viruses in outbreaks of acute gastroenteritis in The Netherlands from 1994 through 2005. Journal of Clinical Microbiology, 45(5), 1389–1394. https://doi.org/10.1128/JCM.02305-06

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thanusuwannasak, T., Puenpa, J., Chuchaona, W., Vongpunsawad, S., & Poovorawan, Y. (2018). Emergence of multiple norovirus strains in Thailand, 2015–2017. Infection, Genetics and Evolution, 61, 108–112. https://doi.org/10.1016/j.meegid.2018.03.021

    Article  PubMed  Google Scholar 

  • Tohma, K., Lepore, C. J., Ford-Siltz, L. A., & Parra, G. I. (2017). Phylogenetic analyses suggest that factors other than the capsid protein play a role in the epidemic potential of GII.2 norovirus. mSphere, 2(3), 00187–00217. https://doi.org/10.1128/mSphereDirect.00187-17

    Article  Google Scholar 

  • Tunyakittaveeward, T., Rupprom, K., Pombubpa, K., Howteerakul, N., & Kittigul, L. (2019). Norovirus monitoring in oysters using two different extraction methods. Food and Environmental Virology, 11(4), 374–382. https://doi.org/10.1007/s12560-019-09396-y

    Article  PubMed  Google Scholar 

  • van Beek, J., de Graaf, M., Al-Hello, H., Allen, D. J., Ambert-Balay, K., Botteldoorn, N., Brytting, M., Buesa, J., Cabrerizo, M., Chan, M., Cloak, F., Di Bartolo, I., Guix, S., Hewitt, J., Iritani, N., Jin, M., Johne, R., Lederer, I., Mans, J., … NoroNet. (2018). Molecular surveillance of norovirus, 2005–16: an epidemiological analysis of data collected from the NoroNet network. Lancet Infectious Diseases, 18(5), 545–553. https://doi.org/10.1016/S1473-3099(18)30059-8

    Article  PubMed  Google Scholar 

  • Vennema, H., de Bruin, E., & Koopmans, M. (2002). Rational optimization of generic primers used for Norwalk-like virus detection by reverse transcriptase polymerase chain reaction. Journal of Clinical Virology, 25, 233–235. https://doi.org/10.1016/s1386-6532(02)00126-9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The proof reading of this manuscript was supported by the Editorial Office, Faculty of Graduate Studies, Mahidol University.

Funding

This work was supported by a research grant from the Thai Government Budget through Mahidol University, Bangkok, Thailand, fiscal years 2015–2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leera Kittigul.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict or competing of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kittigul, L., Pombubpa, K., Rupprom, K. et al. Detection of Norovirus Recombinant GII.2[P16] Strains in Oysters in Thailand. Food Environ Virol 14, 59–68 (2022). https://doi.org/10.1007/s12560-022-09508-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12560-022-09508-1

Keywords

Navigation