Skip to main content

Advertisement

Log in

Norovirus GII.17 Associated with a Foodborne Acute Gastroenteritis Outbreak in Brazil, 2016

  • Brief Communication
  • Published:
Food and Environmental Virology Aims and scope Submit manuscript

Abstract

Foodborne transmission gastroenteritis (AGE) outbreak occurred during a celebration lunch in July, 2016, Brazil. All stool samples tested were positive for noroviruses (NoV) and phylogenetic analysis revealed that strains were genetically close to GII.17 Kawasaki_2014. These findings indicated circulation of NoV GII.17 Kawasaki_2014 in the Brazilian population, associated with AGE outbreak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Andrade, J. S. R., Fumian, T. M., Leite, J. P. G., Assis, M. R., Bello, G., Mir, D., et al. (2017). Detection and molecular characterization of emergent GII.P17/GII.17 Norovirus in Brazil, 2015. Infection, Genetics and Evolution, 51, 28–32.

    Article  PubMed  CAS  Google Scholar 

  • Beuret, C., Kohler, D., Baumgartner, A., & Lüthi, T. M. (2002). Norwalk-like virus sequences in mineral waters: One year monitoring of three brands. Applied and Environmental Microbiology, 68, 1925–1931.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chan, M. C., Lee, N., Hung, T. N., Kwok, K., Cheung, K., Tin, E. K., et al. (2015). Rapid emergence and predominance of a broadly recognizing and fast-evolving norovirus GII.17 variant in late 2014. Nature Communications, 6, 10061.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dang, Thanh H., Than, V. T., Nguyen, T. H., Lim, I., & Kim, W. (2016). Emergence of norovirus GII.17 variants among children with acute gastroenteritis in South Korea. PLoS ONE, 11, e0154284.

    Article  CAS  Google Scholar 

  • Degiuseppe, J. I., Gomes, K. A., Hadad, M. F., Parra, G. I., & Stupka, J. A. (2017). Detection of novel GII.17 norovirus in Argentina, 2015. Infection, Genetics and Evolution, 47, 121–124.

    Article  PubMed  CAS  Google Scholar 

  • Dinus, S., Nagy, M., Negru, D. G., Popovici, E. D., Zota, L., & Oprisan, G. (2016). Molecular identification of emergent GII. P17-GII.17 norovirus genotype, Romania, 2015. EuroSurveillance, 21(7), 30141.

    Article  Google Scholar 

  • Green, K. Y. (2013). Caliciviridae: The noroviruses. In D. M. Knipe & P. M. Howley (Eds.), Fields virology (6th ed., pp. 949–979). Philadelphia: Wolters Kluwer Health/Lippincott Williams and Wilkins.

    Google Scholar 

  • Huang, X. Y., Su, J., Lu, Q. C., Li, S. Z., Zhao, J. Y., Li, M. L., et al. (2017). A large outbreak of acute gastroenteritis caused by the human norovirus GII.17 strain at a university in Henan Province, China. Infectious Diseases of Poverty, 6(1), 6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Imamura, S., Haruna, M., Goshima, T., Kanezashi, H., Okada, T., & Akimoto, K. (2016). Application of next-generation sequencing to investigation of norovirus diversity in shellfish collected from two coastal sites in Japan from 2013 to 2014. Japanese Journal of Veterinary Research, 64(2), 113–122.

    PubMed  Google Scholar 

  • Jung, S., Hwang, B. M., Jung, H., Chung, G., Yoo, C. K., & Lee, D. Y. (2017). Emergence of norovirus GII.17-associated outbreak and sporadic cases in Korea from 2014 to 2015. Osong Public Health and Research Perspectives, 8(1), 86–90.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kageyama, T., Kojima, S., Shinohara, M., Uchida, K., Fukushi, S., Hoshino, F. B., et al. (2003). Broadly reactive and highly sensitive assay for Norwalk-like viruses based on real-time quantitative reverse transcription-PCR. Journal of Clinical Microbiology, 41, 1548–1557.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khamrin, P., Kumthip, K., Yodmeeklin, A., Supadej, K., Ukarapol, N., Thongprachum, A., et al. (2016). Molecular characterization of norovirus GII.17 detected in healthy adult, intussusception patient, and acute gastroenteritis children in Thailand. Infection, Genetics and Evolution, 44, 330–333.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120.

    Article  PubMed  CAS  Google Scholar 

  • Kojima, S., Kageyama, T., Fukushi, S., Hoshino, F. B., Shinohara, M., Uchida, K., et al. (2002). Genogroup-specific PCR primers for detection of Norwalk-like viruses. Journal of Virology Methods, 100, 107–114.

    Article  CAS  Google Scholar 

  • Kroneman, A., Vega, E., Vennema, H., Vinje, J., White, P. A., Hansman, G., et al. (2013). Proposal for a unified norovirus nomenclature and genotyping. Archives of Virology, 158(10), 2059–2068.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.

    Article  PubMed  CAS  Google Scholar 

  • La Rosa, G., Della Libera, S., Iaconelli, M., Proroga, Y. T., De Medici, D., Martella, V., et al. (2017). Detection of norovirus GII.17 Kawasaki 2014 in shellfish, marine water and underwater sewage discharges in Italy. Food and Environmental Virology. https://doi.org/10.1007/s12560-017-9290-8.

    Article  PubMed  Google Scholar 

  • LeBlanc, J. J., Pettipas, J., Gaston, D., Taylor, R., Hatchette, T. F., Booth, T. F., et al. (2016). Outbreak of Norovirus GII.P17-GII.17 in the Canadian Province of Nova Scotia. Canadian Journal of Infectious Diseases and Medical Microbiology. https://doi.org/10.1155/2016/1280247.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindesmith, L. C., Costantini, V., Swanstrom, J., Debbink, K., Donaldson, E. F., Vinjé, J., et al. (2013). Emergence of a norovirus GII.4 strain correlates with changes in evolving blockade epitopes. Journal of Virology, 87(5), 2803–2813.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu, J., Sun, L., Fang, L., Yang, F., Mo, Y., Lao, J., et al. (2015). Gastroenteritis outbreaks caused by norovirus GII.17, Guangdong Province, China, 2014–2015. Emerging Infectious Diseases, 21(7), 1240–1242.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matsushima, Y., Ishikawa, M., Shimizu, T., Komane, A., Kasuo, S., Shinohara, M., et al. (2015). Genetic analyses of GII.17 norovirus strains in diarrheal disease outbreaks from December 2014 to March 2015 in Japan reveal a novel polymerase sequence and amino acid substitutions in the capsid region. Euro Surveillance: Bulletin Europeen sur les Maladies Transmissibles = European Communicable Disease Bulletin, 20(26), 21173.

    Article  Google Scholar 

  • Medici, M. C., Tummolo, F., Calderaro, A., Chironna, M., Giammanco, G. M., De Grazia, S., et al. (2015). Identification of the novel Kawasaki 2014 GII.17 human norovirus strain in Italy, 2015. Euro Surveillance, 20(35), 30010.

    Article  PubMed  Google Scholar 

  • Morillo, S. G., Luchs, A., Cilli, A., & do Carmo, S. T. T. M. (2012). Rapid detection of norovirus in naturally contaminated food: foodborne gastroenteritis outbreak on a cruise ship in Brazil, 2010. Food Environmental Virology, 4(3), 124–129.

    Article  PubMed  Google Scholar 

  • Morillo, S. G., Luchs, A., Cilli, A., Ribeiro, C. D., de Cássia, C. C. R., & do Carmo, S. T. T. M. (2017). Norovirus GII.Pe genotype: tracking a foodborne outbreak on a cruise ship through molecular epidemiology, Brazil, 2014. Food and Environmental Virology, 9(2), 142–148.

    Article  PubMed  CAS  Google Scholar 

  • Parra, G. I., & Green, K. Y. (2015). Genome of emerging norovirus GII.17, United States, 2014. Emerging Infectious Diseases, 21, 1477–1479.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patel, M. M., Widdowson, M. A., Glass, R. I., Akazawa, K., Vinje, J., & Parashar, U. D. (2008). Systematic literature review of role of noroviruses in sporadic gastroenteritis. Emerging Infectious Diseases, 14(8), 1224–1231.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pu, J., Kazama, S., Miura, T., Azraini, N. D., Konta, Y., Ito, H., et al. (2016). Pyrosequencing analysis of norovirus genogroup II distribution in sewage and oysters: First detection of GII.17 Kawasaki 2014 in Oysters. Food and Environmental Virology, 8(4), 310–312.

    Article  PubMed  CAS  Google Scholar 

  • Qin, M., Dong, X. G., Jing, Y. Y., Wei, X. X., Wang, Z. E., Feng, H. R., et al. (2016). A waterborne gastroenteritis outbreak caused by norovirus GII.17 in a Hotel, Hebei, China, December 2014. Food and Environmental Virology, 8(3), 180–186.

    Article  PubMed  Google Scholar 

  • Rasmussen, L. D., Schultz, A. C., Uhrbrand, K., Jensen, T., & Fischer, T. K. (2016). Molecular evidence of oysters as vehicle of norovirus GII.P17-GII.17. Emerging Infectious Diseases, 22(11), 2024–2025.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanchez, M. A., Corcostégui, S. P., De Broucker, C. A., Cabre, O., Watier-Grillot, S., Perelle, S., et al. (2017). Norovirus GII.17 outbreak linked to an infected post-symptomatic food worker in a french military unit located in France. Food and Environmental Virology, 9(2), 234–237.

    Article  PubMed  Google Scholar 

  • Silva, L. D., Bandeira, R. D., Junior, E. C., Lima, I. C., da Penha Júnior, E. T., Teixeira, D. M., et al. (2017). Detection and genetic characterization of the emergent GII.17_2014 norovirus genotype among children with gastroenteritis from Northern Brazil. Infection, Genetics and Evolution, 48, 1–3.

    Article  PubMed  CAS  Google Scholar 

  • Vinje, J. (2015). Advances in laboratory methods for detection and typing of norovirus. Journal of Clinical Microbiology, 53(2), 373–381.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zeng, S. Q., Halkosalo, A., Salminen, M., Szakal, E. D., Puustinen, L., & Vesikari, T. (2008). One-step quantitative RT-PCR for the detection of rotavirus in acute gastroenteritis. Journal of Virology Methods, 153(2), 238–240.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Oswaldo Cruz Institute/Fiocruz, State Central Laboratory (LACEN-MG), Brazilian National Council for Scientific and Technological Development (CNPq) and Carlos Chagas Filho Foundation for Research Support in the State of Rio de Janeiro (Faperj). MPM and JPG Leite are Research Productivity fellowships of CNPq/Faperj.

Funding

This work was supported by Oswaldo Cruz Institute/Fiocruz, Brazilian National Council for Scientific and Technological Development (CNPq) and Carlos Chagas Filho Foundation for Research Support in the State of Rio de Janeiro (Faperj).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana da Silva Ribeiro de Andrade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Ribeiro de Andrade, J., Fumian, T.M., Leite, J.P.G. et al. Norovirus GII.17 Associated with a Foodborne Acute Gastroenteritis Outbreak in Brazil, 2016. Food Environ Virol 10, 212–216 (2018). https://doi.org/10.1007/s12560-017-9326-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12560-017-9326-0

Keywords

Navigation