Skip to main content
Log in

Microstructure and Properties of the LDEDed Cu-Bearing Martensitic Stainless Steel After a Single-Step Tempering Treatment

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

431 martensitic stainless steels (MSS) alloying with copper (Cu, 0–3.5 wt%) have been fabricated by a laser directed energy deposition technology and treated by a single-step tempering treatment. The microstructure and properties of the tempered MSS specimens have been carefully investigated by various advanced techniques, including XRD, SEM, EBSD, TEM, microhardness tester, universal material testing machine, and electrochemical workstation. The results show that the Cu-free 431 MSS is mainly composed of lath-shaped martensite, a few patches of austenite and carbide, while the martensite matrix is refined with the increased austenite and nano-precipitates by increasing Cu content of the Cu-bearing MSS. Consequently, the microhardness of the Cu-bearing 431 MSS specimens increases firstly and then decreases, reaching the maximum value (472 HV0.2) at the Cu level of 2.5 wt%. In comparison to the Cu-free 431 MSS, the addition of 2.5 wt% Cu could lead to a striking comprehensive performance, including tensile properties with ultimate tensile strength (UTS) of 1576 MPa, yield strength (YS) of 1258 MPa and elongation (EL) of 16.1%, as well as improved corrosion resistance by an order of magnitude. The mechanisms behind the variation in the overall performance of the Cu-bearing 431 MSS specimens were discussed in detail.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Liu, A. Li, X. Cheng, S.Q. Zhang, H.M. Wang, Effects of heat treatment on microstructure and tensile properties of laser melting deposited AISI 431 martensitic stainless steel. Mater. Sci. Eng. A 666, 27–33 (2016). https://doi.org/10.1016/j.msea.2016.04.014

    Article  CAS  Google Scholar 

  2. I. Hemmati, V. Ocelík, J.T.M. De Hosson, The effect of cladding speed on phase constitution and properties of AISI 431 stainless steel laser deposited coatings. Surf. Coat. Technol. 205, 5235–5239 (2011). https://doi.org/10.1016/j.surfcoat.2011.05.035

    Article  CAS  Google Scholar 

  3. B.C. Li, H.M. Zhu, C.J. Qiu, X.K. Gong, Laser cladding and in-situ nitriding of martensitic stainless steel coating with striking performance. Mater. Lett. 259, 126829 (2020). https://doi.org/10.1016/j.matlet.2019.126829

    Article  CAS  Google Scholar 

  4. H.M. Zhu, M.N. Ouyang, J.P. Hu, J.W. Zhang, C.J. Qiu, Design and development of TiC-reinforced 410 martensitic stainless steel coatings fabricated by laser cladding. Ceram. Int. 47, 12505–12513 (2021). https://doi.org/10.1016/j.ceramint.2021.01.108

    Article  CAS  Google Scholar 

  5. B. Aydogan, A. O’Neil, H. Sahasrabudhe, Microstructural and mechanical characterization of stainless steel 420 and Inconel 718 multi-material structures fabricated using laser directed energy deposition. J. Manuf. Process. 68, 1224–1235 (2021). https://doi.org/10.1016/j.jmapro.2021.06.031

    Article  Google Scholar 

  6. B.C. Li, H.M. Zhu, C.J. Qiu, D.K. Zhang, Development of high strength and ductile martensitic stainless steel coatings with Nb addition fabricated by laser cladding. J. Alloys Compd. 832, 154985 (2020). https://doi.org/10.1016/j.jallcom.2020.154985

    Article  CAS  Google Scholar 

  7. J.P. Hu, H.M. Zhu, J.W. Zhang, M.N. Ouyang, C.J. Qiu, J.A. Duan, Effects of TiC addition on microstructure, microhardness and wear resistance of 18Ni300 maraging steel by direct laser deposition. J. Mater. Process. Technol. 296, 117213 (2021). https://doi.org/10.1016/j.jmatprotec.2021.117213

    Article  CAS  Google Scholar 

  8. H.M. Zhu, J.W. Zhang, J.P. Hu, M.N. Ouyang, C.J. Qiu, Effects of aging time on the microstructure and mechanical properties of laser-cladded 18Ni300 maraging steel. J. Mater. Sci. 56, 8835–8847 (2021). https://doi.org/10.1007/s10853-021-05841-1

    Article  CAS  Google Scholar 

  9. L.D.V. Natália, A.C. Fernandes, R.A. Santos, T.F.A. Santos, S.L.U. Filho, Effect of laser parameters on the characteristics of a laser clad AISI 431 stainless steel coating on carbon steel substrate. JOM 73, 2868–2877 (2021). https://doi.org/10.1007/s11837-021-04835-3

    Article  CAS  Google Scholar 

  10. E.W.A. Figueredo, L.H.R. Apolinario, M.V. Santos, A.C.S. Silva, J.A. Avila, M.S.F. Lima, T.F.A. Santos, Influence of laser beam power and scanning speed on the macrostructural characteristics of AISI 316L and AISI 431 stainless steel depositions produced by laser cladding process. J. Mater. Eng. Perform. 30, 3298–3312 (2021). https://doi.org/10.1007/s11665-021-05676-6

    Article  CAS  Google Scholar 

  11. L.Q. Li, F.M. Shen, Y.D. Zhou, W. Tao, Comparative study of stainless steel AISI 431 coatings prepared by extreme-high-speed and conventional laser cladding. J. Laser Appl. 31, 042009 (2019). https://doi.org/10.2351/1.5094378

    Article  CAS  Google Scholar 

  12. K.P. Balan, A. Venugopal Reddy, D.S. Sarma, Effect of single and double austenitization treatments on the microstructure and mechanical properties of 16Cr–2Ni steel. J. Mater. Eng. Perform. 8, 385–393 (1999). https://doi.org/10.1361/105994999770346963

    Article  CAS  Google Scholar 

  13. A. Rajasekhar, G. Madhusudhan Reddy, T. Mohandas, V.S.R. Murti, Influence of austenitizing temperature on microstructure and mechanical properties of AISI 431 martensitic stainless steel electron beam welds. Mater. Des. 30, 1612–1624 (2009). https://doi.org/10.1016/j.matdes.2008.07.042

    Article  CAS  Google Scholar 

  14. K. Wang, B.H. Chang, J.S. Chen, H.G. Fu, Y.H. Lin, Y.P. Lei, K. Wang, B. Chang, J. Chen et al., Effect of molybdenum on the microstructures and properties of stainless steel coatings by laser cladding. Appl. Sci. 7, 1065 (2017). https://doi.org/10.3390/app7101065

    Article  CAS  Google Scholar 

  15. X.Y. Gao, H.Y. Wang, C. Ma, M. Lv, G. Sha, Y.M. Li, H.P. Ren, Micromechanism involved in ultrafine grained ferrite/martensite dual phase steels strengthened by nanoscale Cu-rich precipitates. Mater. Sci. Eng. A 819, 141522–141525 (2021). https://doi.org/10.1016/j.msea.2021.141522

    Article  CAS  Google Scholar 

  16. J. Wang, C.G. Li, X.J. Di, Effect of Cu content on microstructure and mechanical properties for high-strength deposited metals strengthened by nano-precipitation. Metals 12, 1360 (2022). https://doi.org/10.3390/met12081360

    Article  CAS  Google Scholar 

  17. H.L. Sun, D.D. Li, Y.P. Diao, Y. He, L.C. Yan, X.L. Pang, K.W. Gao, Nanoscale Cu particle evolution and its impact on the mechanical properties and strengthening mechanism in precipitation-hardening stainless steel. Mater. Charact. 188, 111885 (2022). https://doi.org/10.1016/j.matchar.2022.111885

    Article  CAS  Google Scholar 

  18. D. Ye, J. Li, W. Jiang, J. Su, K.Y. Zhao, Effect of Cu addition on microstructure and mechanical properties of 15% Cr super martensitic stainless steel. Mater. Des. 41, 16–22 (2012). https://doi.org/10.1016/j.matdes.2012.04.036

    Article  CAS  Google Scholar 

  19. Y.L. Huang, J.L. Zhao, J.R. Zhang, C.G. Yang, Y. Zhao, K. Yang, Y. Huang, J. Zhao, J. Zhang et al., Optimized antibacterial treatment for the Cu-bearing 420 stainless steel. Mater. Technol. 33, 699–708 (2018). https://doi.org/10.1080/10667857.2018.1497574

    Article  CAS  Google Scholar 

  20. L. Wang, C.F. Dong, C. Man, D.C. Kong, K. Xiao, X.G. Li, Enhancing the corrosion resistance of selective laser melted 15–5PH martensite stainless steel via heat treatment. Corros. Sci. 166, 108427 (2020). https://doi.org/10.1016/j.corsci.2019.108427

    Article  CAS  Google Scholar 

  21. J. Ma, Y.Y. Song, H.C. Jiang, L.J. Rong, Effect of Cu on the microstructure and mechanical properties of a low-carbon martensitic stainless steel. Materials 15, 8849 (2022). https://doi.org/10.1016/j.corsci.2019.108427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. C. Zhang, K.T. Yamanaka, H.K. Bian, A. Chiba, Corrosion-resistant carbide-reinforced martensitic steel by Cu modification. NPJ. Mat. Degrad. 3, 30 (2019). https://doi.org/10.1038/s41529-019-0092-3

    Article  CAS  Google Scholar 

  23. D. Ye, L.H. Yu, W. Jiang, K.Y. Zhao, J. Su, Synergistic effect of Cu and Ni on the formation of reversed austenite in super martensitic stainless steel. Ironmak. Steelmak. (2018). https://doi.org/10.1080/03019233.2018.1522099

    Article  Google Scholar 

  24. M.C. Niu, K. Yang, J.H. Luan, W. Wang, Cu-assisted austenite reversion and enhanced TRIP effect in maraging stainless steels. J. Mater. Sci. Technol. 104, 52–58 (2022). https://doi.org/10.1016/j.jmst.2021.06.055

    Article  CAS  Google Scholar 

  25. Y. Liu, J.J. Yang, H. Yang, K.M. Li, Y.T. Qiu, W.C. Zhang, S.F. Zhou, Cu-bearing 316L stainless steel coatings produced by laser melting deposition: microstructure and corrosion behavior in simulated body fluids. Surf. Coat. Technol. 428, 127868 (2021). https://doi.org/10.1016/j.surfcoat.2021.127868

    Article  CAS  Google Scholar 

  26. W.F. Hu, H.N. Zhu, J.M. Hu, B.M. Li, C.J. Qiu, Influence of vanadium microalloying on microstructure and property of laser-cladded martensitic stainless steel coating. Materials 13, 826 (2020). https://doi.org/10.3390/ma13040826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. S. Takaki, M. Fujioka, S. Aihara, Y. Nagataki, T. Yamashita, N. Sano, Y. Adachi, M. Nomura, H. Yaguchi, Effect of copper on tensile properties and grain-refinement of steel and its relation to precipitation behavior. Mater. Trans. 45, 2239–2244 (2004). https://doi.org/10.2320/matertrans.45.2239

    Article  CAS  Google Scholar 

  28. Z.B. Jiao, J.H. Luan, M.K. Miller, C.T. Liu, Precipitation mechanism and mechanical properties of an ultra-high strength steel hardened by nanoscale NiAl and Cu particles. Acta Mater. 97, 58–67 (2015). https://doi.org/10.1016/j.actamat.2015.06.063

    Article  CAS  Google Scholar 

  29. A. Das, S.K. Das, S. Tarafder, Correlation of fractographic features with mechanical properties in systematically varied microstructures of Cu-strengthened high-strength low-alloy steel. Metall. Mater. Trans. A 40, 3138–3146 (2009). https://doi.org/10.1007/s11661-009-9999-6

    Article  CAS  Google Scholar 

  30. Y. Dai, S. Wang, Q.Y. He, C. Liu, X.Y. Wang, X. Li, L. Li, Y.J. Liu, C. He, Q.Y. Wang, Effect of microstructure on slip-induced crack initiation and early propagation of martensitic steel during high cycle fatigue. Int. J. Fatigue 167, 107275 (2023). https://doi.org/10.1016/j.ijfatigue.2022.107275

    Article  CAS  Google Scholar 

  31. G. Krauss, Martensite in steel: strength and structure. Mater. Sci. Eng. A 273, 40–57 (1999). https://doi.org/10.1016/S0921-5093(99)00288-9

    Article  Google Scholar 

  32. Y.Y. Song, D.H. Ping, F.X. Yin, X.Y. Li, Y.Y. Li, Microstructural evolution and low temperature impact toughness of a Fe–13%Cr–4%Ni–Mo martensitic stainless steel. Mater. Sci. Eng. A 527, 614–618 (2010). https://doi.org/10.1016/j.msea.2009.08.022

    Article  CAS  Google Scholar 

  33. H. Kong, Z. Jiao, J. Lu, C.T. Liu, Low-carbon advanced nanostructured steels: microstructure, mechanical properties, and applications. Sci. China Mater. 64, 1580–1597 (2021). https://doi.org/10.1007/s40843-020-1595-2

    Article  CAS  Google Scholar 

  34. R.L. Xiong, H.B. Peng, T.W. Zhang, J.W. Bae, H.S. Kim, Y.H. Wen, Superior strain-hardening by deformation-induced nano-HCP martensite in Fe–Mn–Si–C high- manganese steel. Mater. Sci. Eng. A 824, 141864 (2021). https://doi.org/10.1016/j.msea.2021.141864

    Article  CAS  Google Scholar 

  35. M.H. Zhang, L.H. Sun, Y.L. Liu, Y.L. Feng, N. Xu, H.Y. Chen, Y.D. Wang, In-situ investigation of strengthening and strain hardening mechanisms of Cu-added medium-Mn steels by synchrotron-based high-energy X-ray diffraction. J. Mater. Res. Technol. 24, 2952–2964 (2023). https://doi.org/10.1016/j.jmrt.2023.03.209

    Article  CAS  Google Scholar 

  36. L. Qi, A.G. Khachaturyan, J.W. Morris, The microstructure of dislocated martensitic steel: theory. Acta Mater. 76, 23–39 (2014). https://doi.org/10.1016/j.actamat.2014.04.038

    Article  CAS  Google Scholar 

  37. G. Miyamoto, N. Iwata, N. Takayama, T. Furuhara, Mapping the parent austenite orientation reconstructed from the orientation of martensite by EBSD and its application to ausformed martensite. Acta Mater. 58, 6393–6403 (2010). https://doi.org/10.1016/j.actamat.2010.08.001

    Article  CAS  Google Scholar 

  38. B. Xiao, L.Y. Xu, C. Cayron, J. Xue, G. Sha, R. Logé, Solute-dislocation interactions and creep-enhanced Cu precipitation in a novel ferritic-martensitic steel. Acta Mater. 195, 199–208 (2020). https://doi.org/10.1016/j.actamat.2020.05.054

    Article  CAS  Google Scholar 

  39. J. Hidalgo, M.J. Santofimia, Effect of prior austenite grain size refinement by thermal cycling on the microstructural features of as-quenched lath martensite. Metall. Mater. Trans. A 47, 5288–5301 (2016). https://doi.org/10.1007/s11661-016-3525-4

    Article  CAS  Google Scholar 

  40. Y.P. Zhang, D.P. Zhan, X.W. Qi, Z.H. Jiang, Austenite and precipitation in secondary-hardening ultra-high-strength stainless steel. Mater. Charact. 144, 393–399 (2018). https://doi.org/10.1016/j.matchar.2018.07.038

    Article  CAS  Google Scholar 

  41. P. Kürnsteiner, M.B. Wilms, A. Weisheit, P. Barriobero-Vila, E.A. Jägle, D. Raabe, Massive nanoprecipitation in an Fe–19Ni–xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition. Acta Mater. 129, 52–60 (2017). https://doi.org/10.1016/j.actamat.2017.02.069

    Article  CAS  Google Scholar 

  42. P. Kürnsteiner, M.B. Wilms, A. Weisheit, B. Gault, E.A. Jägle, D. Raabe, High-strength Damascus steel by additive manufacturing. Nature 582, 515–519 (2020). https://doi.org/10.1038/s41586-020-2409-3

    Article  CAS  PubMed  Google Scholar 

  43. K. Li, J.B. Zhan, T.B. Yang, A.C.S. Tan, Q. Tang, H.J. Cao, L.E. Murr, Homogenization timing effect on microstructure and precipitation strengthening of 17–4PH stainless steel fabricated by laser powder bed fusion. Addit. Manuf. 52, 102672 (2022). https://doi.org/10.1016/j.addma.2022.102672

    Article  CAS  Google Scholar 

  44. Y.U. Heo, Y.K. Kim, J.S. Kim, J.K. Kim, Phase transformation of Cu precipitates from bcc to fcc in Fe–3Si–2Cu alloy. Acta Mater. 61, 519–528 (2013). https://doi.org/10.1016/j.actamat.2012.09.068

    Article  CAS  Google Scholar 

  45. C. Zhang, M. Enomoto, T. Yamashita, N. Sano, Cu precipitation in a prestrained Fe-1.5 wt pct Cu alloy during isothermal aging. Metall. Mater. Trans. A 35, 1263–1272 (2004). https://doi.org/10.1007/s11661-004-0300-8

    Article  Google Scholar 

  46. J. Jung, M.S. Jung, S.M. Lee, E. Shin, H.C. Shin, Y.K. Lee, Cu precipitation kinetics during martensite tempering in a medium C steel. J. Alloys Compd. 553, 299–307 (2013). https://doi.org/10.1016/j.jallcom.2012.11.108

    Article  CAS  Google Scholar 

  47. A.W. Bowen, G.M. Leak, Solute diffusion in alpha-and gamma-iron. Metall. Trans. 1, 1695–1700 (1970). https://doi.org/10.1007/BF02642019

    Article  CAS  Google Scholar 

  48. W. Jiang, K. Zhao, Effect of Cu on the formation of reversed austenite in super martensitic stainless steel. Materials 16, 1302 (2023). https://doi.org/10.3390/ma16031302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Y.H. Kim, J.H. Kim, T.H. Hwang, J.Y. Lee, C.Y. Kang, Effect of austenite on mechanical properties in high manganese austenitic stainless steel with two phase of martensite and austenite. Met. Mater. Int. 21, 485–489 (2015). https://doi.org/10.1007/s12540-015-4480-0

    Article  CAS  Google Scholar 

  50. J. Hu, L.X. Du, W. Xu, J.H. Zhai, Y. Dong, Y.J. Liu, R.D.K. Misra, Ensuring combination of strength, ductility and toughness in medium-manganese steel through optimization of nano-scale metastable austenite. Mater. Charact. 136, 20–28 (2018). https://doi.org/10.1016/j.matchar.2017.11.058

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was finally supported by the National Natural Science Foundation of China (52375341) and Hunan Provincial Natural Science Foundation (2022JJ30494).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongmei Zhu or Changjun Qiu.

Ethics declarations

Competing interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled “Microstructure and properties of the LDEDed Cu-bearing martensitic stainless steel after a single-step tempering treatment”.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Figs. 9, 10 and Table 3.

Fig. 9
figure 9

The microhardness of the as-built AISI 431-xCu (x = 0, 1, 1.5, 2.5, 3.5). In as-built state, the microhardness of 0 Cu, 1Cu, 1.5Cu, 2.5Cu and 3.5Cu samples are 447 HV, 442 HV, 456 HV, 434 HV, and 421 HV, respectively. The date indicated that the addition of Cu has a little effect on the microhardness of the 431 MSS in as-built state

Fig. 10
figure 10

Tensile curves of the as-built 431-xCu (x = 0, 1, 1.5, 2.5, 3.5). The date shows that the addition of can improve the ductile of the 431 MSS, without a significant beneficial effect on the strength enhancement

Table 3 The tensile results of the as-built 431 MSS with various Cu contents

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Zhao, L., Li, B. et al. Microstructure and Properties of the LDEDed Cu-Bearing Martensitic Stainless Steel After a Single-Step Tempering Treatment. Met. Mater. Int. 30, 1307–1320 (2024). https://doi.org/10.1007/s12540-023-01569-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01569-6

Keywords

Navigation