Skip to main content
Log in

Correlation of Fractographic Features with Mechanical Properties in Systematically Varied Microstructures of Cu-Strengthened High-Strength Low-Alloy Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Fracture is often the culmination of continued deformation. Therefore, it is probable that a fracture surface may contain an imprint of the deformation processes that were operative. In this study, the deformation behavior of copper-strengthened high-strength low-alloy (HSLA) 100 steel has been investigated. Systematic variation of the microstructure has been introduced in the steel through various aging treatments. Due to aging, the coherency, size, shape, and distribution of the copper precipitates were changed, while those of inclusions, carbides, and carbonitrides were kept unaltered. Two-dimensional dimple morphologies, quantified from tensile fracture surfaces, have been correlated to the nature of the variation of the deformation parameters with aging treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.H. Goods and L.M. Brown: Acta Metall., 1979, vol. 27, pp. 1–15.

    Article  CAS  Google Scholar 

  2. A.L. Gurson: ASME J. Eng. Mater. Technol., 1977, vol. 99, pp. 1–15.

    Google Scholar 

  3. P.F. Thomason: Ductile Fracture of Metals, Pergamon Press, Oxford, United Kingdom, 1990.

    Google Scholar 

  4. J. Wilsius, A. Imad, M. Naitabdelaziz, G. Measmacque, and C. Eripret: Fat. Fract. Eng. Mater. Struct., 1999, vol. 23 (2), pp. 105–12.

    Article  Google Scholar 

  5. J.P. Bandstra, D.A. Koss, A. Geltmacher, P. Matic, and R.K. Everett: Mater. Sci. Eng. A, 2004, vol. 366, pp. 269–81.

    Article  Google Scholar 

  6. J. Wen, Y. Huang, K.C. Hwang, C. Liu, and M. Li: Int. J. Plast., 2005, vol. 21, pp. 381–95.

    Article  MATH  Google Scholar 

  7. J.L. Maloney and W.M. Garrison, Jr.: Scripta Metall., 1989, vol. 23, pp. 2097–2100.

    Article  CAS  Google Scholar 

  8. I.G. Palmer and G.C. Smith: Proc. AZME Co & Oxide Dispersion Strengthening, Bolton Landing, NY, June 1966, Gordon & Breach, New York, NY, 1967.

  9. T.B. Cox and J.R. Low: Metall. Trans., 1974, vol. 5, pp. 1457–70.

    Article  CAS  Google Scholar 

  10. A.S. Argon and J. Im: Metall. Trans. A, 1975, vol. 6A, pp. 839–51.

    CAS  ADS  Google Scholar 

  11. C.T. Liu and J. Gurland: Trans. ASM, 1968, vol. 61, pp. 156–67.

    CAS  Google Scholar 

  12. D. Broek: Eng. Fract. Mech., 1973, vol. 5, pp. 55–66.

    Article  CAS  Google Scholar 

  13. W.M. Garrison, Jr. and N.R. Moody: J. Phys. Chem. Sol., 1987, vol. 48 (11), pp. 1035–74.

    Article  CAS  ADS  Google Scholar 

  14. R. Becker, R.E. Smelser, O. Richmond, and E. Appleby: Metall. Trans. A, 1989, vol. 20A, pp. 853–61.

    CAS  ADS  Google Scholar 

  15. N. Ishikawa, David M. Parks, and M. Kurihara: ISIJ Int., 2000, vol. 40 (5), pp. 519–27.

    Article  CAS  Google Scholar 

  16. V. Jablokov, D.M. Goto, D.A. Koss, and J.B. McKirgan: Mater. Sci. Eng. A, 2001, vol. 320, pp. 197–205.

    Google Scholar 

  17. A.A. Benzerga, J. Besson, and A. Pineau: Acta Mater., 2004, vol. 52, pp. 4623–38.

    Article  CAS  Google Scholar 

  18. D. Chae and D.A. Koss: Mater. Sci. Eng. A, 2004, vol. 366, pp. 299–309.

    Article  Google Scholar 

  19. W.Y. Lu, M.F. Horstemeyer, J. Korellis, R. Grishibar, and D. Mosher: Theo. Appl. Fract. Mech., 1998, vol. 30, pp. 139–52.

    Article  CAS  Google Scholar 

  20. G.T. Hahn, M.F. Kanninen, and A.R. Rosenfield: A. Rev. Mater. Sci., 1972, vol. 2 pp. 381–404.

    Article  CAS  Google Scholar 

  21. K.E. Puttick: Phil. Mag., 1959, vol. 4, pp. 964–69.

    Article  CAS  ADS  Google Scholar 

  22. C. Crussard, J. Plateau, R. Tamhankar, and D. Lajeunesse: A Comparison of Ductile and Fatigue Fractures: Swamp - scott Conference on Fracture, John Wiley & Sons, Inc., New York, NY, 1959, pp. 524–58.

  23. H.C. Rogers: AIME Trans., 1960, vol. 218, pp. 498–506.

    Google Scholar 

  24. A.R. Rosenfield: Mater. Metall. Rev., 1968, vol. 13 (121), pp. 29–40.

    CAS  Google Scholar 

  25. D. Broek: Ph.D. Thesis, National Lucht-.en Ruimtevaartlaboratorium, Amsterdam, The Netherlands, 1971, NLR TR 71021.

  26. K. Srinivasan, O. Kolednik, and T. Siegmund: Eng. Fract. Mech., 2007, vol. 74 pp. 1323–43.

    Article  Google Scholar 

  27. A. Das, S.K. Das, S. Sivaprasad, and S. Tarafder: Scripta Mater., 2008, vol. 59 (7), pp. 681–83.

    Article  CAS  Google Scholar 

  28. A. Das, S. Sivaprasad, P.C. Chakraborti, and S. Tarafder: Mater. Sci. Eng. A, 2008, vol. 496, (1–2), pp. 98–105.

    Google Scholar 

  29. A. Das and S. Tarafder: Scripta Mater., 2008, vol. 59 (9), pp. 1014–17.

    Article  CAS  Google Scholar 

  30. A. Das and S. Tarafder: Int. J. Plast., 2009, DOI: 10.1016/j.ijplas.2009.03.003.

  31. T. Pardoen, I. Doghri, and F. Delannay: Acta Mater., 1998, vol. 46 (2), pp. 541–52.

    Article  CAS  Google Scholar 

  32. T. Pardoen and J.W. Hutchinson: Acta Mater., 2003, vol. 51 (1), pp. 133–48.

    Article  CAS  Google Scholar 

  33. S.K. Das, S. Chatterjee, and S. Tarafder: Mater. Sci. Technol., 2006, vol. 22 (12), pp. 1409–14.

    Article  CAS  Google Scholar 

  34. S.K. Das, S. Sivaprasad, S. Das, S. Chatterjee, and S. Tarafder: Mater. Sci. Eng. A, 2006, vol. 431, pp. 68–79.

    Article  Google Scholar 

  35. S.K. Das: Ph.D. Thesis, Bengal Engineering and Science University, Shibpur, Howrah, India, 2007.

  36. C.D. Calhoun and N.S. Stoloff: Metall. Trans., 1970, vol. 1, pp. 997–1006.

    CAS  Google Scholar 

  37. I. Kirman: Metall. Trans., 1971, vol. 2, pp. 1761–70.

    CAS  Google Scholar 

  38. J.R. Low, Jr., R.H. Van Stone, and R.H. Merchant: NASA Technical Report No. 2, Research Grant NGR 38-087-003, Carnegie-Mellon University, Pittsburgh, PA, 1972.

  39. T.B. Cox and J.R. Low, Jr.: NASA Technical Report No. 4, Research Grant NGR-39-087-003, Carnegie-Mellon University, Pittsburgh, PA, 1972.

  40. S.M. El-Soudani and R.M. Pelloux: Metall. Trans., 1973, vol. 4, pp. 519–31.

    Article  CAS  Google Scholar 

  41. G.R. Speich and W.A. Spitzig: Metall. Trans. A, 1982, vol. 13, pp. 2239–58.

    Article  CAS  Google Scholar 

  42. W.A. Spitzig: Acta Metall., 1985, vol. 33 (2), pp. 175–84.

    Article  CAS  Google Scholar 

  43. M.F. Horstemeyer and A.M. Gokhale: Int. J. Sol. Struct., 1999, vol. 36, pp. 5029–55.

    Article  MATH  Google Scholar 

  44. M. Karlik, P. Kratochvil, M. Janecek, J. Siegl, and V. Vodickova: Mater. Sci. Eng. A, 2000, vol. 289, pp. 182–88.

    Article  Google Scholar 

  45. M. Erdogan and S. Tekeli: Mater. Des., 2002, vol. 23, pp. 597–604.

    CAS  Google Scholar 

  46. X.Q. Wu and I.S. Kim: Mater. Sci. Eng. A, 2003, vol. 348, pp. 309–18.

    Article  Google Scholar 

  47. X. Xiao, S. Fang, L. Xia, W. Li, Q. Hua, and Y. Dong: J. Non-Cryst. Sol., 2003, vol. 330, pp. 242–47.

    Article  CAS  ADS  Google Scholar 

  48. W.S. Lee, J.I. Chen, and C.F. Lin: Mater. Sci. Eng. A, 2004, vol. 381, pp. 206–15.

    Article  Google Scholar 

  49. A. Salemi and A. Abdollah-zadeh: Mater. Characterization, 2008, vol. 59 (4), pp. 484–87.

    Article  CAS  Google Scholar 

  50. W.S. Lee, C.Y. Liu, and T.H. Chen: J. Nucl. Mater., 2008, vol. 374, pp. 313–19.

    Article  CAS  ADS  Google Scholar 

  51. H. Miura, T. Sakai, M. Okonogi, and N. Oshinaga: Mater. Sci. Eng. A, 2008, vols. 483–484, pp. 590–93.

    Google Scholar 

  52. T.L. Anderson: Fracture Mechanics: Fundamentals and Applications, 3rd ed., CRC Press, Boca Raton, FL, p. 265.

  53. G.E. Dieter: Mechanical Metallurgy, SI Metric Edition, McGraw-Hill Book Company, New York, NY, 1993, p. 145.

  54. K. Banerjee: Metall. Trans. A, 1988, vol. 19, pp. 961–71.

    Article  Google Scholar 

  55. M. Mujahid, A.K. Lis, C.I. Garcia, and A.J. DeArdo: Key Eng. Mater., 1993, vols. 84–85, pp. 203–09.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpan Das.

Additional information

Manuscript submitted March 12, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, A., Das, S.K. & Tarafder, S. Correlation of Fractographic Features with Mechanical Properties in Systematically Varied Microstructures of Cu-Strengthened High-Strength Low-Alloy Steel. Metall Mater Trans A 40, 3138–3146 (2009). https://doi.org/10.1007/s11661-009-9999-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-9999-6

Keywords

Navigation