Skip to main content
Log in

Influence of Laser Beam Power and Scanning Speed on the Macrostructural Characteristics of AISI 316L and AISI 431 Stainless Steel Depositions Produced by Laser Cladding Process

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the laser cladding process, control of the process parameters and knowledge of the characteristics of the materials used are essential for obtaining depositions with excellent metallurgical union, satisfactory dilution values, absence of defects, and acceptable geometric characteristics. Without such precautions, depositions can exhibit low or excess dilution, low wettability, and the presence of pores, consequently reducing the performance of the materials. The aim of the present work was to evaluate the effects of the laser beam power, with maximum power of 4000 W and continuous wave mode, and scanning speed in laser cladding processes employing the AISI 316L austenitic stainless steel and the AISI 431 martensitic stainless steel, considering the geometric characteristics, dilution, and structural defects of the depositions. It was found that the laser power had a greater effect on the width and dilution of the depositions, while the scanning speed influenced the deposition height. The depositions of AISI 431 steel presented dilution values between 9 and 25%, using power settings between 1400 and 1600 W. The depositions of AISI 316L steel required higher power values between 1900 and 2600 W to achieve dilution values between 15 and 41%. The existence of pores and satisfactory hardness values were observed for both materials, with the average of microhardness of 522 HV0.5/15 and 356 HV0.5/15 on the AISI 431 and AISI 316L depositions. It was also found that the different characteristics of the addition metals, considering their morphology, particle size distribution, and flow rate, led to significant changes in the geometric features of the depositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

References

  1. F. Dehnavi, A. Eslami and F. Ashrafizadeh, A Case Study on Failure of Superheater Tubes in an Industrial Power Plant, Eng. Fail. Anal., 2017, 80, p 368–377. https://doi.org/10.1016/j.engfailanal.2017.07.007

    Article  CAS  Google Scholar 

  2. Y. Liu, C. Liu, W. Liu, Y. Ma, S. Tang, C. Liang et al., Optimization of Parameters in Laser Powder Deposition AlSi10Mg Alloy Using Taguchi Method, Opt. Laser Technol., 2019, 111, p 470–480. https://doi.org/10.1016/j.optlastec.2018.10.030

    Article  CAS  Google Scholar 

  3. V. Balasubramanian, A.K. Lakshminarayanan, R. Varahamoorthy and S. Babu, Application of Response Surface Methodolody to Prediction of Dilution in Plasma Transferred Arc Hardfacing of Stainless Steel on Carbon Steel, J. Iron Steel Res. Int., 2009, 16, p 44–53. https://doi.org/10.1016/S1006-706X(09)60009-1

    Article  CAS  Google Scholar 

  4. F.S. da Luz, W.A. Pinheiro, S.N. Monteiro, V.S. Candido and A.C.R. da Silva, Mechanical Properties and Microstructural Characterization of a Novel 316L Austenitic Stainless Steel Coating on A516 Grade 70 Carbon Steel Weld, J. Market. Res., 2020, 9, p 636–640. https://doi.org/10.1016/j.jmrt.2019.11.004

    Article  CAS  Google Scholar 

  5. S. Singh, K. Goyal and R. Goyal, Performance of Ni3Al and TiO2 Coatings on T22 Boiler Tube Steel in Simulated Boiler Environment in Laboratory, J. Mech. Eng., 2017, 46, p 54–61. https://doi.org/10.3329/jme.v46i1.32524

    Article  Google Scholar 

  6. I. Hemmati, V. Ocelik and J.T.M. De Hosson, Microstructural Characterization of AISI 431 Martensitic Stainless Steel Laser-Deposited Coatings, J. Mater. Sci., 2011, 46, p 3405–3414.

    Article  CAS  Google Scholar 

  7. L.H.R. Apolinario, D. Wallerstein, M.A. Montealegre, S.L. Urtiga Filho, E.A. Torres, T.F.C. Hermenegildo et al., Predominant Solidification Modes of 316 Austenitic Stainless Steel Coatings Deposited by Laser Cladding on 304 Stainless Steel Substrates, Metall. Mater. Trans. A, 2019 https://doi.org/10.1007/s11661-019-05293-y

    Article  Google Scholar 

  8. T.F.A. Santos and M.S. Andrade, Internal Friction on AISI 304 Stainless Steels with Low Tensile Deformations at Temperatures Between − 50 and 20 C, Adv. Mater. Sci. Eng., 2010, 2010, p 1–8. https://doi.org/10.1155/2010/326736

    Article  CAS  Google Scholar 

  9. I. Hemmati, V. Ocelík and JTh.M. De Hosson, The Effect of Cladding Speed on Phase Constitution and Properties of AISI 431 Stainless Steel Laser Deposited Coatings, Surf. Coat. Technol., 2011, 205, p 5235–5239. https://doi.org/10.1016/j.surfcoat.2011.05.035

    Article  CAS  Google Scholar 

  10. M. Moradi, H. Arabi, S. Jamshidi Nasab and K.Y. Benyounis, A Comparative Study of Laser Surface Hardening of AISI 410 and 420 Martensitic Stainless Steels by Using Diode Laser, Opt. Laser Technol., 2019, 111, p 347–357. https://doi.org/10.1016/j.optlastec.2018.10.013

    Article  CAS  Google Scholar 

  11. M. Sharifitabar and A. Halvaee, Resistance Upset Butt Welding of Austenitic to Martensitic Stainless Steels, Mater. Des., 2010, 31, p 3044–3050. https://doi.org/10.1016/j.matdes.2010.01.026

    Article  CAS  Google Scholar 

  12. Y. Liu, A. Li, X. Cheng, S.Q. Zhang and H.M. Wang, Effects of Heat Treatment on Microstructure and Tensile Properties of Laser Melting Deposited AISI 431 Martensitic Stainless Steel, Mater. Sci. Eng., A, 2016, 666, p 27–33. https://doi.org/10.1016/j.msea.2016.04.014

    Article  CAS  Google Scholar 

  13. M. Moradi, A. Ashoori and A. Hasani, Additive Manufacturing of Stellite 6 Superalloy by Direct Laser Metal Deposition—Part 1: Effects of Laser Power and Focal Plane Position, Opt. Laser Technol., 2020, 131, p 106328. https://doi.org/10.1016/j.optlastec.2020.106328

    Article  CAS  Google Scholar 

  14. M. Moradi, A. Hasani, Z. Malekshahi Beiranvand and A. Ashoori, Additive Manufacturing of Stellite 6 Superalloy by direct Laser Metal Deposition—Part 2: Effects of Scanning Pattern and Laser Power Reduction in Differrent Layers, Opt. Laser Technol., 2020, 131, p 106455. https://doi.org/10.1016/j.optlastec.2020.106455

    Article  CAS  Google Scholar 

  15. M. Nabhani, R.S. Razavi and M. Barekat, An Empirical-Statistical Model for Laser Cladding of Ti-6Al-4V Powder on Ti-6Al-4V Substrate, Opt. Laser Technol., 2018, 100, p 265–271. https://doi.org/10.1016/j.optlastec.2017.10.015

    Article  CAS  Google Scholar 

  16. B.A. Khamidullin, I.V. Tsivilskiy, A.I. Gorunov and AKh. Gilmutdinov, Modeling of the Effect of Powder Parameters on Laser Cladding Using Coaxial Nozzle, Surf. Coat. Technol., 2019, 364, p 430–443. https://doi.org/10.1016/j.surfcoat.2018.12.002

    Article  CAS  Google Scholar 

  17. G.F. Sun, X.T. Shen, Z.D. Wang, M.J. Zhan, S. Yao, R. Zhou et al., Laser Metal Deposition as Repair Technology for 316L Stainless Steel: Influence of Feeding Powder Compositions on Microstructure and Mechanical Properties, Opt. Laser Technol., 2019, 109, p 71–83. https://doi.org/10.1016/j.optlastec.2018.07.051

    Article  CAS  Google Scholar 

  18. P. Aubry, C. Blanc, I. Demirci, M. Dal, T. Malot and H. Maskrot, Laser Cladding and Wear Testing of Nickel Base Hardfacing Materials: Influence of Process Parameters, J. Laser Appl., 2017, 29, p 022504. https://doi.org/10.2351/1.4983160

    Article  CAS  Google Scholar 

  19. P. Alvarez, M. Montealegre, J. Pulido-Jiménez and J. Arrizubieta, Analysis of the Process Parameter Influence in Laser Cladding of 316L Stainless Steel, J. Manuf. Mater. Process., 2018, 2, p 55. https://doi.org/10.3390/jmmp2030055

    Article  CAS  Google Scholar 

  20. C. Zhong, A. Gasser, J. Kittel, T. Schopphoven, N. Pirch, J. Fu et al., Study of Process Window Development for High Deposition-Rate Laser Material Deposition by Using Mixed Processing Parameters, J. Laser Appl., 2015, 27, p 032008. https://doi.org/10.2351/1.4919804

    Article  CAS  Google Scholar 

  21. J. Näkki, J. Tuominen and P. Vuoristo, Effect of minor elements on solidification cracking and dilution of alloy 625 powders in laser cladding, J. Laser Appl., 2017, 29, p 012014. https://doi.org/10.2351/1.4973673

    Article  CAS  Google Scholar 

  22. S. Katayama, Y. Kawahito and M. Mizutani, Elucidation of Laser Welding Phenomena and Factors Affecting Weld Penetration and Welding Defects, Phys. Procedia, 2010, 5, p 9–17. https://doi.org/10.1016/j.phpro.2010.08.024

    Article  CAS  Google Scholar 

  23. S.E. Aghili and M. Shamanian, Investigation of Powder Fed Laser Cladding of NiCr-Chromium Carbides Single-Tracks on Titanium Aluminide Substrate, Opt. Laser Technol., 2019, 119, p 105652. https://doi.org/10.1016/j.optlastec.2019.105652

    Article  CAS  Google Scholar 

  24. A. Aggarwal, S. Patel and A. Kumar, Selective Laser Melting of 316L Stainless Steel: Physics of Melting Mode Transition and Its Influence on Microstructural and Mechanical Behavior, JOM, 2019, 71, p 1105–1116. https://doi.org/10.1007/s11837-018-3271-8

    Article  CAS  Google Scholar 

  25. J. Metelkova, Y. Kinds, K. Kempen, C. de Formanoir, A. Witvrouw and B. Van Hooreweder, On the Influence of Laser Defocusing in Selective Laser Melting of 316L, Addit. Manuf., 2018, 23, p 161–169. https://doi.org/10.1016/j.addma.2018.08.006

    Article  CAS  Google Scholar 

  26. D.M. Goodarzi, J. Pekkarinen and A. Salminen, Effect of Process Parameters in Laser Cladding on Substrate Melted Areas and the Substrate Melted Shape, J. Laser Appl., 2015, 27, p S29201. https://doi.org/10.2351/1.4906376

    Article  Google Scholar 

  27. M. Moradi and M. KaramiMoghadam, High Power Diode Laser Surface Hardening of AISI 4130; Statistical Modelling and Optimization, Opt. Laser Technol., 2019, 111, p 554–570. https://doi.org/10.1016/j.optlastec.2018.10.043

    Article  CAS  Google Scholar 

  28. K. Shah, A.J. Pinkerton, A. Salman and L. Li, Effects of Melt Pool Variables and Process Parameters in Laser Direct Metal Deposition of Aerospace Alloys, Mater. Manuf. Processes, 2010, 25, p 1372–1380. https://doi.org/10.1080/10426914.2010.480999

    Article  CAS  Google Scholar 

  29. R.M. Miranda, G. Lopes, L. Quintino, J.P. Rodrigues and S. Williams, Rapid Prototyping with High Power Fiber Lasers, Mater. Des., 2008, 29, p 2072–2075. https://doi.org/10.1016/j.matdes.2008.03.030

    Article  CAS  Google Scholar 

  30. H. Pajukoski, J. Näkki, S. Thieme, J. Tuominen, S. Nowotny and P. Vuoristo, High Performance Corrosion Resistant Coatings by Novel Coaxial Cold- and Hot-Wire Laser Cladding Methods, J. Laser Appl., 2016, 28, p 012011. https://doi.org/10.2351/1.4936988

    Article  CAS  Google Scholar 

  31. L. Benedetti, B. Brulé, N. Decraemer, K.E. Evans and O. Ghita, Evaluation of Particle Coalescence and its Implications in Laser Sintering, Powder Technol., 2019, 342, p 917–928. https://doi.org/10.1016/j.powtec.2018.10.053

    Article  CAS  Google Scholar 

  32. D. Riabov and S. Bengtsson. Factors Affecting Printability of 316L Powders Using the DMLS Process, September 16 (Beijing, China), World Conference on Powder Metallurgy, China Powder Metallurgy Alliance, 2018, p 1–12

  33. B. Al-Mangour Ed., Powder Metallurgy of Stainless Steel: State-of-the Art, Challenges, and Development. Stainless Steel: Microstructure, Mechanical Properties and Methods of Application. Nova Science Publishers, New York, 2015, p 37–80

    Google Scholar 

  34. H. El Cheikh, B. Courant, S. Branchu, J.-Y. Hascoët and R. Guillén, Analysis and Prediction of Single Laser Tracks Geometrical Characteristics in Coaxial Laser Cladding Process, Opt. Lasers Eng., 2012, 50, p 413–422. https://doi.org/10.1016/j.optlaseng.2011.10.014

    Article  Google Scholar 

  35. C. Zhong, T. Biermann, A. Gasser and R. Poprawe, Experimental Study of Effects of Main Process Parameters on Porosity, Track Geometry, Deposition Rate, and Powder Efficiency for High Deposition Rate Laser Metal Deposition, J. Laser Appl., 2015, 27, p 042003. https://doi.org/10.2351/1.4923335

    Article  CAS  Google Scholar 

  36. D.J. Corbin, A.R. Nassar, E.W. Reutzel, A.M. Beese and N.A. Kistler, Effect of Directed Energy Deposition Processing Parameters on Laser Deposited Inconel ® 718: External Morphology, J. Laser Appl., 2017, 29, p 022001. https://doi.org/10.2351/1.4977476

    Article  CAS  Google Scholar 

  37. M. Ansari, R. Shoja Razavi and M. Barekat, An empirical-Statistical Model for Coaxial Laser Cladding of NiCrAlY Powder on Inconel 738 Superalloy, Opt. Laser Technol., 2016, 86, p 136–144. https://doi.org/10.1016/j.optlastec.2016.06.014

    Article  CAS  Google Scholar 

  38. J.A. Aguilera, C. Aragón and F. Peñalba, Plasma Shielding Effect in Laser Ablation of Metallic Samples and its Influence on LIBS Analysis, Appl. Surf. Sci., 1998, 127–129, p 309–314. https://doi.org/10.1016/S0169-4332(97)00648-X

    Article  Google Scholar 

  39. J.M. Vadillo, J.M. Fernandez Romero, C. Rodríguez and J.J. Laserna, Effect of Plasma Shielding on Laser Ablation Rate of Pure Metals at Reduced Pressure, Surf. Interface Anal., 1999, 27, p 1009–1015.

    Article  CAS  Google Scholar 

  40. J. Xu, Y. Luo, L. Zhu, J. Han, C. Zhang and D. Chen, Effect of Shielding Gas on the Plasma Plume in Pulsed Laser Welding, Measurement, 2019, 134, p 25–32. https://doi.org/10.1016/j.measurement.2018.10.047

    Article  Google Scholar 

  41. L. Costa, I. Felde, T. Réti, Z. Kálazi, R. Colaço, R. Vilar et al., A Simplified Semi-Empirical Method to Select the Processing Parameters for Laser Clad Coatings, MSF, 2003, 414–415, p 385–394. https://doi.org/10.4028/www.scientific.net/MSF.414-415.385

    Article  Google Scholar 

  42. J. Pekkarinen, A. Salminen, V. Kujanpää, J. Ilonen, L. Lensu and H. Kälviäinen, Powder Cloud Behavior in Laser Cladding Using Scanning Optics, J. Laser Appl., 2016, 28, p 032007. https://doi.org/10.2351/1.4947598

    Article  CAS  Google Scholar 

  43. U. de Oliveira, V. Ocelík and JTh.M. De Hosson, Analysis of Coaxial Laser Cladding Processing Conditions, Surf. Coat. Technol., 2005, 197, p 127–136. https://doi.org/10.1016/j.surfcoat.2004.06.029

    Article  CAS  Google Scholar 

  44. C. Bonnet, F. Valiorgue, J. Rech and H. Hamdi, Improvement of the Numerical Modeling in Orthogonal Dry Cutting of an AISI 316L Stainless Steel by The Introduction of a New Friction Model, CIRP J. Manuf. Sci. Technol., 2008, 1, p 114–118. https://doi.org/10.1016/j.cirpj.2008.09.006

    Article  Google Scholar 

  45. Online Materials Information Resource - MatWeb 2021. http://www.matweb.com/index.aspx (accessed May 1, 2021).

  46. D. Tanigawa, N. Abe, M. Tsukamoto, Y. Hayashi, H. Yamazaki, Y. Tatsumi et al., The Effect of Particle Size on the Heat Affected Zone During Laser Cladding of Ni–Cr–Si–B Alloy on C45 Carbon Steel, Opt. Lasers Eng., 2018, 101, p 23–27. https://doi.org/10.1016/j.optlaseng.2017.09.021

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support provided by FACEPE, CNPq, CAPES, ANP/Petrobras, and FINEP. This work was also supported by financial programs of UFPE addressed to T.F.A. Santos (Calls nº 08/2019, 07/2020, and 09/2020). The authors also thank to Brazilian Nanotechnology National Laboratory (LNNano/CNPEM/MCTI) to use the SEM FEI Quanta 650F (Proposal SEM-C1 – 26013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. F. A. Santos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Figueredo, E.W.A., Apolinario, L.H.R., Santos, M.V. et al. Influence of Laser Beam Power and Scanning Speed on the Macrostructural Characteristics of AISI 316L and AISI 431 Stainless Steel Depositions Produced by Laser Cladding Process. J. of Materi Eng and Perform 30, 3298–3312 (2021). https://doi.org/10.1007/s11665-021-05676-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05676-6

Keywords

Navigation