Skip to main content
Log in

Distribution of Bi–MnS Inclusions Existing in 1215MS Steels: Correlation with Thermal Physical Coefficient

  • Published:
Metals and Materials International Aims and scope Submit manuscript

A Correction to this article was published on 16 December 2021

This article has been updated

Abstract

This work aims to comprehensively summarize the types and distribution of the isolated Bi particles and MnS inclusions in the Bi-bearing steels, to study the precipitated behavior of sulfide, and to study the effect of Bi particles on grain sizes and the volume thermal expansion coefficients of the steels. Results show that the average percentage of the isolated Bi particles, semi-encapsulation, complete encapsulation, back-bridge, tiny encapsulation, cavity bridge Bi–MnS inclusions in the Bi-bearing steels was 16.89%, 20.49%, 3.44%, 16.89%, 31.63%, 10.66%, respectively. The average equivalent diameters of the grains in the 0 ppm, 130 ppm, 240 ppm, 760 ppm, 1200 ppm and 2300 ppm Bi content steels were 20.88, 20.17, 19.54, 18.13, 13.98 and 13.25 μm, respectively. The precipitated equilibrium mass concentration product of the MnS (w[Mn]·w[S]) was calculated to be 1.07, and the solid fraction fS value was 0.61. At 950 °C, the volume thermal expansion coefficient change (ΔVE) in 760 ppm Bi content steel was minimum 4 × 10–10%, while at 461.6 °C the ΔVE was maximum, 0.09%, which means that Bi affected the volume thermal expansion of the steel strongest in this temperature range.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Change history

References

  1. F.Y. Huang, Y.H. Frank, J.C. Kuo, Met. Mater. Int. 24, 1333 (2018)

    Article  CAS  Google Scholar 

  2. J.B. Xie, J. Li, Z.W. Li, L.P. Wu, P.P. Zhang, J.X. Fu, Ironmak. Steelmak. (2020) https://doi.org/10.1080/03019233.2020.1845566

  3. H. Yaguchi, Mater. Sci. Technol. 5, 255 (1989)

    Article  CAS  Google Scholar 

  4. T. Akasawa, H. Sakurai, M. Nakamura,  T. Tanaka, K. Takano, J. Mater. Process. Tech. 143–144, 66 (2003)

    Article  Google Scholar 

  5. N.E. Luiz, R. Machado, P. I. Mech. Eng. B J. Eng.  222, 347 (2008)

    Article  CAS  Google Scholar 

  6. G. Bernsmann, M. Bleymeh, R. Ehl, A. Hassler, Stahl Eisen 12, 87 (2001)

    Google Scholar 

  7. H. Pray, H. Peoples, F.W. Fink, Proc. ASTM 41, 646 (1941)

    Google Scholar 

  8. J.B. Xie, T. Fan, Z.Q. Zeng, H. Sun, J.X. Fu, J. Mater. Res. Technol. 9, 9142(2020)

    Article  CAS  Google Scholar 

  9. Z. Li, D. Wu, J. Mater. Sci. Technol. 26, 839 (2010)

    Article  CAS  Google Scholar 

  10. H.B. Peng, Y. Tang, Y.M. Zhang, X. Wang, C. Zhou, T. Indian I. Metals 73, 873 (2020)

    Article  CAS  Google Scholar 

  11. H.T. Liu, W.Q. Chen, Ironmak. Steelmak. 41, 355 (2014)

    Article  CAS  Google Scholar 

  12. H.T. Liu, W.Q. Chen, Ironmak. Steelmak. 41, 19 (2014)

    Article  Google Scholar 

  13. H.T. Liu, W.Q. Chen, W. Li, Y. Yu, High Temp. Mater. Proc. 33, 187 (2014)

    Article  CAS  Google Scholar 

  14. J.B. Xie, D.L. Hu, J.X. Fu, H. Liu, Ironmak. Steelmak. 46, 542 (2019)

    Article  CAS  Google Scholar 

  15. J.B. Xie, L.P. Wu, X.Y. Wu, J.X. Fu, Emerg. Mater. Res. 9, 1145 (2020)

    Article  Google Scholar 

  16. J.B. Xie, D. Zhang, Q.K. Yang, J.M. An, Z.Z. Huang, J.X. Fu, Ironmak. Steelmak. 46, 564 (2019)

    Article  CAS  Google Scholar 

  17. Z.X. Li, C.S. Li, S.H. Kim, D.W. Suh, Met. Mater. Int. 25, 9 (2019)

    Article  CAS  Google Scholar 

  18. J.R. Weeks, Am. Soc. Metals, Trans. Quant. 58, 302 (1965)

    CAS  Google Scholar 

  19. O. Kubaschewski, Iron-Binary Phase Diagrams (Springer, Berlin, 1982)

    Google Scholar 

  20. A.S. Chaus, ISIJ Int. 45, 1297 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work appreciates the fund of National Natural Science Foundation of China (52074179).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-xun Fu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In the original publication of the article, in Table 1 the Al and O contents are incorrect and they have been corrected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Jb., Liu, Bb., Wu, Xy. et al. Distribution of Bi–MnS Inclusions Existing in 1215MS Steels: Correlation with Thermal Physical Coefficient. Met. Mater. Int. 28, 1306–1313 (2022). https://doi.org/10.1007/s12540-021-01097-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-01097-1

Keywords

Navigation