Skip to main content
Log in

Multivariate statistics and hydrogeochemical modeling for source identification of major elements and heavy metals in the groundwater of Qareh-Ziaeddin plain, NW Iran

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The present study aims to evaluate the possible source of major and some minor elements and heavy metals in the groundwater of Qareh-Ziaeddin plain, NW Iran with respect to chemical elements, saturation index, and multivariate statistics including correlation coefficient, cluster analysis, and factor analysis. Groundwater samples were collected in Jun 2016 and measured with respect to EC, pH, major and some minor elements and heavy metals including Fe, Mn, Zn, Cr, Pb, Cd, Al, and As. Among all the measured parameters, some of the samples exceed the World Health Organization (WHO) guideline value for EC, Na, Mg, HCO3, SO4, Cl, NO3, F, As, Zn, and Pb. The results of correlation analysis show that weathering and dissolution of minerals especially evaporites and silicates, water-rock interaction, and cation exchange are dominant occurred processes in the groundwater of the study area. Also, denitrification process is occurred in the groundwater system. Cluster analysis categorizes the samples into three distinct groups which are different based on their EC and dependent variables, e.g., Na, Ca, Cl, SO4 and pH, Pb, Cd, and As. It can be found that volcanic, evaporite, and clay formations have the least impact on the chemistry of the cluster 1 samples while clay and evaporite formations have the highest impact on the cluster 3 and also calcareous formations on cluster 2. Factor analysis shows that five factors, with total variance of 83%, are effective in the release of heavy metals and groundwater chemistry which are mostly geogenic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Amini H, Haghighat GA, Yunesian M, Nabizade R, Mahvi AH, Dehghani MH, Davani R, Aminian AR, Shamsipour M, Hassanzadeh N, Faramarzi H, Mesdaghinia A (2016) Spatial and temporal variability of fluoride concentrations in groundwater resources of Larestan and Gerash regions in Iran from 2003 to 2010. Environ Geochem Health 38(1):25–37. https://doi.org/10.1007/s10653-015-9676-1

    Article  Google Scholar 

  • Amiri V, Nakhaei M, Lak R, Kholgi M (2016a) Assessment of seasonal groundwater quality and potential saltwater intrusion: a study case in Urmia coastal aquifer (NW Iran) using the groundwater quality index (GQI) and hydrochemical facies evolution diagram (HFE-D). Stoch Environ Res Risk Assess 30(5):1473–1484. https://doi.org/10.1007/s00477-015-1108-3

    Article  Google Scholar 

  • Amiri V, Nakhaei M, Lak R, Kholghi M (2016b) Investigating the salinization and freshening processes of coastal groundwater resources in Urmia aquifer, NW Iran. Environ Monit Assess 188(4):233. https://doi.org/10.1007/s10661-016-5231-5

    Article  Google Scholar 

  • Anawar HM, Akai J, Sakugaqa H (2003) Mobilization of arsenic from subsurface sediments by the effect of bicarbonate ions in groundwater. Chemosphere 54:753–762

    Article  Google Scholar 

  • Asghari Moghaddam A, Fijani E (2008) Distribution of fluoride in groundwater of Maku area, northwest of Iran. Environ Geol 56(2):281–287. https://doi.org/10.1007/s00254-007-1163-2

    Article  Google Scholar 

  • Avtar R, Kumar P, Surjan A, Gupta LN, Roychowdhury K (2013) Geochemical processes regulating groundwater chemistry with special reference to nitrate and fluoride enrichment in Chhatarpur area, Madhya Pradesh, India. Environ Earth Sci 7(40):1699–1708

    Article  Google Scholar 

  • Bagheri R, Bagheri F, Eggenkamp HGM (2017) Origin of groundwater salinity in the Fasa plain, southern Iran, hydrogeochemical and isotopic approaches. Environ Earth Sci 76(19):662. https://doi.org/10.1007/s12665-017-6998-6

    Article  Google Scholar 

  • Baghvand A, Nasrabadi T, Bidhendi GN, Vosoogh A, Karbassi A, Mehrdadi N (2010) Groundwater quality degradation of an aquifer in Iran central desert. Desalination 260(1–3):264–275. https://doi.org/10.1016/j.desal.2010.02.038

    Article  Google Scholar 

  • Balkhair KS, Ashraf MA (2016) Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in the western region of Saudi Arabia. Saudi J Biol Sci 23(1):32–44

    Article  Google Scholar 

  • Barzegar R, Asghari Moghaddam A, Kazemian N (2015) Assessment of heavy metals concentrations with emphasis on arsenic in the Tabriz plain aquifers, Iran. Environ Earth Sci 74(1):297–313. https://doi.org/10.1007/s12665-015-4123-2

    Article  Google Scholar 

  • Barzegar R, Asghari Moghaddam A, Najib M, Kazemian N, Adamowski J (2016a) Characterization of hydrogeologic properties of the Tabriz plain multi-layer aquifer system, NW Iran. Arab J Geosci 9(2):147. https://doi.org/10.1007/s12517-015-2229-1

    Article  Google Scholar 

  • Barzegar R, Asghari Moghaddam A, Tziritis E (2016b) Assessing the hydrogeochemistry and water quality of the Aji-Chay River, northwest of Iran. Environ Earth Sci 75(23):1486. https://doi.org/10.1007/s12665-016-6302-1

    Article  Google Scholar 

  • Barzegar R, Asghari Moghaddam A, Tziritis E (2017a) Hydrogeochemical features of groundwater resources in Tabriz plain, northwest of Iran. Appl Water Sci 7(7):3997–4011. https://doi.org/10.1007/s13201-017-0550-4

    Article  Google Scholar 

  • Barzegar R, Asghari Moghaddam A, Tziritis E, Fakhri MS, Soltani S (2017b) Identification of hydrogeochemical processes and pollution sources of groundwater resources in the Marand plain, northwest of Iran. Environ Earth Sci 76(7):297. https://doi.org/10.1007/s12665-017-6612-y

    Article  Google Scholar 

  • Belkhiri L, Mouni L, Narany TS, Tiri A (2017) Evaluation of potential health risk of heavy metals in groundwater using the integration of indicator kriging and multivariate statistical methods. Groundwater for Sustainable Development 4:12–22. https://doi.org/10.1016/j.gsd.2016.10.003

    Article  Google Scholar 

  • Belzile N, Chen YW, Gunn JM, Dixit SS (2004) Sediment trace metal profiles in lakes of Killarney Park, Canada: from regional to continental influence. Environ Pollut 130(2):239–248. https://doi.org/10.1016/j.envpol.2003.12.003

    Article  Google Scholar 

  • Brown CE (1998) Coefficient of variation. In Applied multivariate statistics in geohydrology and related sciences (pp. 155-157). Springer Berlin Heidelberg

  • Bu H, Tan X, Li S, Zhang Q (2010) Water quality assessment of the Jinshui River (China) using multivariate statistical techniques. Environ Earth Sci 60(8):1631–1639. https://doi.org/10.1007/s12665-009-0297-9

    Article  Google Scholar 

  • Chkirbene A, Tsujimura M, Charef A, Tanaka T (2009) Hydrogeochemical evolution of groundwater in an alluvial aquifer: case of Kurokawa aquifer, Tochigi prefecture, Japan. Desalination 246(1-3):485–495. https://doi.org/10.1016/j.desal.2008.04.057

    Article  Google Scholar 

  • Das A (1990) Metal ion induced toxicity and detoxification by chelation therapy. A text book on medical aspects of bio-inorganic chemistry, Ist ed, CBS, Delhi, 17–58

  • Davis JR (1986) Statistics and data analysis in geology. Wiley, New York 646 p

    Google Scholar 

  • Ebrahimi M, Kazemi H, Ehteshami M, Rockaway TD (2016) Assessment of groundwater quantity and quality and saltwater intrusion in the Damghan basin, Iran. Chem Erde Geochem 76(2):227–241. https://doi.org/10.1016/j.chemer.2016.04.003

    Article  Google Scholar 

  • Edet AE, Merkel BJ, Offiong OE (2003) Trace element hydrochemical assessment of the Calabar coastal plain aquifer, southeastern Nigeria using statistical methods. Environ Geol 44(2):137–149

    Google Scholar 

  • Evanko CR, Dzombak DA (1997) Remediation of metals-contaminated soils and ground water: technical report TE-97-01. USEPA ground water remediation technologies analysis center, Pitlsburg, PA, 46 pp.

  • Facchinelli A, Sacchi E, Mallen L (2001) Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ Pollut 114(3):313–324. https://doi.org/10.1016/S0269-7491(00)00243-8

    Article  Google Scholar 

  • Guo H, Zhang B, Li Y, Berner Z, Tang X, Norra S, Stueben D (2011) Hydrogeological and biogeochemical constrains of arsenic mobilization in shallow aquifers from the Hetao basin, Inner Mongolia. Environ Pollut 159(4):876–883. https://doi.org/10.1016/j.envpol.2010.12.029

    Article  Google Scholar 

  • Hardle W, Simar L (2007) Applied multivariate statistical analysis, 2nd edn. Springer, Berlin

    Google Scholar 

  • Harvey CF, Swartz CH, Badruzzaman ABM, Keon-Blute N, Yu W, Ali MA, Jay J, Beckie R, Niedan V, Brabander D, Oates PM, Ashfaque KN, Islam S, Hemond HF, Ahmed MF (2002) Arsenic mobility and groundwater extraction in Bangladesh. Science 298(5598):1602–1606. https://doi.org/10.1126/science.1076978

    Article  Google Scholar 

  • Hossain MA, Jungi A, Sakugawa H (2004) Mobilization of arsenic from subsurface by effect of bicarbonates ions in groundwater. Chemosphere 54(6):753–762

    Article  Google Scholar 

  • Keshavarzi B, Moore F, Mosaferi M, Rahmani F (2011) The source of natural arsenic contamination in groundwater, west of Iran. Water Qual Expo Health 3(3–4):135–147. https://doi.org/10.1007/s12403-011-0051-x

    Article  Google Scholar 

  • Kim MJ, Nriagu J, Haack S (2000) Carbonate ions and arsenic dissolution by groundwater. Environ Sci Technol 34:3100–4903

    Google Scholar 

  • Kříbek B, Majer V, Veselovský F, Nyambe I (2010) Discrimination of lithogenic and anthropogenic sources of metals and sulphur in soils of the central-northern part of the Zambian Copperbelt Mining District: a topsoil vs. subsurface soil concept. J Geochem Explor 104(3):69–86. https://doi.org/10.1016/j.gexplo.2009.12.005

    Article  Google Scholar 

  • Kumar M, Ramanathan A, Rao MS, Kumar B (2006) Identification and evaluation of hydrogeochemical processes in the groundwater environment of Delhi, India. J Environ Geol 50(7):1025–1039. https://doi.org/10.1007/s00254-006-0275-4

    Article  Google Scholar 

  • Lee SY, Gilkes RJ (2005) Groundwater geochemistry and composition of hardpans in southwestern Australian regolith. Geoderma 126(1):59–84. https://doi.org/10.1016/j.geoderma.2004.11.007

    Article  Google Scholar 

  • Meng SX, Maynard JB (2001) Use of statistical analysis to formulate conceptual models of geochemical behavior: water chemical data from the Botucatu aquifer in Sao Paulo state, Brazil. J Hydrol 250(1):78–97. https://doi.org/10.1016/S0022-1694(01)00423-1

    Article  Google Scholar 

  • Mohamed EA, Lashin A, Abdalla F, Al-Bassam A (2017) Assessing the hydrogeochemical processes affecting groundwater pollution in arid areas using an integration of geochemical equilibrium and multivariate statistical techniques. Environ Pollut 229:760–770

    Article  Google Scholar 

  • Navratil T, Shanley JB, Skřivan P, Krám P, Mihaljevič M, Drahota P (2007) Manganese biogeochemistry in a central Czech Republic catchment. Water Air Soil Pollut 186(1– 4):149–165

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) Users guide to PHREEQC: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical modelling. US Geology Survey Water Resource Investigation Report, 99–4259, 312 pp.

  • Rahmati O, Samani AN, Mahmoodi N, Mahdavi M (2015) Assessment of the contribution of N-fertilizers to nitrate pollution of groundwater in western Iran (case study: Ghorveh–Dehgelan aquifer). Water Qual Expo Health 7(2):143–151. https://doi.org/10.1007/s12403-014-0135-5

    Article  Google Scholar 

  • Rezaei M, Nikbakht M, Shakeri A (2017) Geochemistry and sources of fluoride and nitrate contamination of groundwater in Lar area, south Iran. Environ Sci Pollut Res 24(18):15471–15487. https://doi.org/10.1007/s11356-017-9108-0

    Article  Google Scholar 

  • Salminen R, Batista MJ, Bidovec M, Demetriades A, De Vivo, B., De Vos W (2005). FOREGS geochemical atlas of Europe, part 1: background information, methodology and maps (pp. 526). Espoo: Geological Survey of Finland

  • Saumen B, Bodhaditya D, Iohborlang MU, Rashmi RD, Hiran K, Lakshya BS, Kusum B, Prasanta KR, Lokendra S (2011) Heavy metal contaminants of underground water in indo Bangla border districts of Tripura, India. Int J Chem Technol Res 3:516–522

    Google Scholar 

  • Singh AK, Tewary BK, Sinha A (2011) Hydrochemistry and quality assessment of groundwater in part of NOIDA metropolitan city, Uttar Pradesh. J Geol Soc India 78(6):523–540. https://doi.org/10.1007/s12594-011-0124-2

    Article  Google Scholar 

  • Soltani S, Asghari Moghaddam A, Barzegar R, Kazemian N, Tziritis E (2017) Hydrogeochemistry and water quality of the Kordkandi-Duzduzan plain, NW Iran: application of multivariate statistical analysis and PoS index. Environ Monit Assess 189:455. https://doi.org/10.1007/s10661-017-6171-4

  • Srivastava SK, Ramanathan AL (2008) Geochemical assessment of groundwater quality in vicinity of Bhalswa landfill, Delhi, India, using graphical and multivariate statistical methods. Environ Geol 53(7):1509–1528. https://doi.org/10.1007/s00254-007-0762-2

    Article  Google Scholar 

  • Tziritis E, Datta PS, Barzegar R (2017) Characterization and assessment of groundwater resources in a complex hydrological basin of central Greece (Kopaida basin) with the joint use of hydrogeochemical analysis, multivariate statistics and stable isotopes. Aquat Geochem 23(4):271–298. https://doi.org/10.1007/s10498-017-9322-x

    Article  Google Scholar 

  • Tziritis E, Skordas K, Kelepertsis A (2016) The use of hydrogeochemical analyses and multivariate statistics for the characterization of groundwater resources in a complex aquifer system. A case study in Amyros River basin, Thessaly, central Greece. Environ Earth Sci 75(4):1–11

    Article  Google Scholar 

  • Vigna FL, Ciadamidaro S, Mazza R, Mancini L (2009) Water quality and relationship between superficial and ground water in Rome (Aniene River basin, central Italy). Environ Earth Sci 60:1267–1279

    Article  Google Scholar 

  • Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 301:236–244

    Article  Google Scholar 

  • WHO (2011) Guidance for immunotoxicity risk assessment for chemicals. (IPCS harmonization project document; no. 10), Geneva

  • Wu Z, He M, Lin C, Fan Y (2011) Distribution and speciation of four heavy metals (Cd, Cr, Mn and Ni) in the surficial sediments from estuary in daliao river and yingkou bay. Environ Earth Sci 63(1):163–175. https://doi.org/10.1007/s12665-010-0680-6

    Article  Google Scholar 

  • Yeomans K, Golder P (1982) The Guttman-Kaiser criterion as a predictor of the number of common factors. J R Stat Soc Series B Stat Methodol 31(3):221–229

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asghar Asghari Moghaddam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaeili, S., Asghari Moghaddam, A., Barzegar, R. et al. Multivariate statistics and hydrogeochemical modeling for source identification of major elements and heavy metals in the groundwater of Qareh-Ziaeddin plain, NW Iran. Arab J Geosci 11, 5 (2018). https://doi.org/10.1007/s12517-017-3317-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-017-3317-1

Keywords

Navigation