Skip to main content

Advertisement

Log in

Spatial and temporal variability of fluoride concentrations in groundwater resources of Larestan and Gerash regions in Iran from 2003 to 2010

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

There is discrepancy about intervals of fluoride monitoring in groundwater resources by Iranian authorities. Spatial and temporal variability of fluoride in groundwater resources of Larestan and Gerash regions in Iran were analyzed from 2003 to 2010 using a geospatial information system and the Mann–Kendall trend test. The mean concentrations of fluoride for the 8-year period in the eight cities and 31 villages were 1.6 and 2.0 mg/l, respectively; the maximum values were 2.4 and 3.8 mg/l, respectively. Spatial, temporal, and spatiotemporal variability of fluoride in overall groundwater resources were relatively constant over the years. However, results of the Mann–Kendall trend test revealed a monotonic trend in the time series of one city and 11 villages for the 8-year period. Specifically, one city and three villages showed positive significant Kendall’s Tau values, suggesting an upward trend in fluoride concentrations over the 8-year period. In contrast, seven villages displayed negative significant Kendall’s Tau values, arguing for a downward trend in fluoride concentrations over the years. From 2003 to 2010, approximately 52 % of the Larestan and Gerash areas have had fluoride concentrations above the maximum permissible Iranian drinking water standard fluoride level (1.4 mg/l), and about 116,000 people were exposed to such excess amounts. Therefore, our study supports for a close monitoring of fluoride concentrations from health authorities in monthly intervals, especially in villages and cities that showed positive trend in fluoride concentrations. Moreover, we recommend simultaneous implementation of cost-effective protective measures or interventions until a standard fluoride level is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ab & Abfa Bureau of Engineering & Technical Standards. (2011). Draft of instructions on groundwater quality monitoring- Publication 384-A

  • Aghazadeh, N., & Mogaddam, A. A. (2010). Assessment of groundwater quality and its suitability for drinking and agricultural uses in the Oshnavieh Area, Northwest of Iran. Journal of Environmental Protection, 1, 30.

    Article  CAS  Google Scholar 

  • Amini, M., Mueller, K., Abbaspour, K. C., Rosenberg, T., Afyuni, M., Møller, K. N., & Johnson, C. A. (2008). Statistical modeling of global geogenic fluoride contamination in groundwaters. Environmental Science & Technology, 42(10), 3662–3668. doi:10.1021/es071958y

  • Amini, H., Taghavi Shahri, S. M., Amini, M., Mehrian, M. R., Mokhayeri, Y., & Yunesian, M. (2011). Drinking water fluoride and blood pressure? An environmental study. Biological Trace Element Research, 144(1), 157–163. doi:10.1007/s12011-011-9054-5

    Article  CAS  Google Scholar 

  • Amini, H., Taghavi Shahri, S. M., Henderson, S. B., Naddafi, K., Nabizadeh, R., & Yunesian, M. (2014). Land use regression models to estimate the annual and seasonal spatial variability of sulfur dioxide and particulate matter in Tehran, Iran. Science of the Total Environment, 488–489, 343–353. doi:10.1016/j.scitotenv.2014.04.106

  • Ayoob, S., & Gupta, A. K. (2006). Fluoride in drinking water: A review on the status and stress effects. Critical Reviews in Environmental Science and Technology, 36(6), 433–487. doi:10.1080/10643380600678112

    Article  CAS  Google Scholar 

  • Battaleb-Looie, S., & Moore, F. (2010). A study of fluoride groundwater occurrence in Posht-e-Kooh-e-Dashtestan, South of Iran. World Applied Science Journal, 8(11), 1317–1321.

    CAS  Google Scholar 

  • Battaleb-Looie, S., Moore, F., Jafari, H., Jacks, G., & Ozsvath, D. (2012). Hydrogeochemical evolution of groundwaters with excess fluoride concentrations from Dashtestan, South of Iran. Environmental Earth Sciences, 67(4), 1173–1182. doi:10.1007/s12665-012-1560-z

  • Beg, M. K., Srivastav, S. K., Carranza, E. J. M., & de Smeth, J. B. (2011). High fluoride incidence in groundwater and its potential health effects in parts of Raigarh District, Chhattisgarh, India. Current Science, 100(5), 750–754.

    CAS  Google Scholar 

  • Chaudhuri, S., & Ale, S. (2013). Characterization of groundwater resources in the Trinity and Woodbine aquifers in Texas. Science of the Total Environment, 452, 333–348. doi:10.1016/j.scitotenv.2013.02.081

  • Clesceri, L. S., Greenberg, A. E., & Eaton, A. D. (1998). Standard methods for the examination of water and wastewater (vol. 20). Washington: American Public Health Association, American Water Works Association, American Environment Federation.

    Google Scholar 

  • Dash, J. P., Sarangi, A., & Singh, D. K. (2010). Spatial variability of groundwater depth and quality parameters in the National Capital Territory of Delhi. Environmental Management, 45(3), 640–650. doi:10.1007/s00267-010-9436-z

    Article  CAS  Google Scholar 

  • Dobaradaran, S., Mahvi, A. H., Dehdashti, S., & Abadi, D. R. V. (2008). Drinking water fluoride and child dental caries in Dashtestan, Iran. Fluoride, 41(3), 220–226.

    Google Scholar 

  • Fawell, J., Bailey, K., Chilton, J., Dahi, E., Fewtrell, L., & Magara, Y. (2006). Fluoride in drinking-water. London: Published on behalf of the World Health Organization by IWA.

    Google Scholar 

  • Fordyce, F., Vrana, K., Zhovinsky, E., Povoroznuk, V., Toth, G., Hope, B., & Baker, J. (2007). A health risk assessment for fluoride in Central Europe. Environmental Geochemistry and Health, 29(2), 83–102. doi:10.1007/s10653-006-9076-7

  • Francisca, F. M., & Perez, M. E. C. (2009). Assessment of natural arsenic in groundwater in Cordoba Province, Argentina. Environmental Geochemistry and Health, 31(6), 673–682. doi:10.1007/s10653-008-9245-y

    Article  CAS  Google Scholar 

  • Geological Survey of Iran (2014). The geological formation of Larestan and Gerash regions, Iran. Tehran, Iran.

  • Gross, E. L., Lindsey, B. D., & Rupert, M. (2012). Quality of major ion and total dissolved solids data from groundwater sampled by the national water-quality assessment program, 1992–2010: US Department of the Interior, US Geological Survey.

  • Hamed, K. H. (2008). Trend detection in hydrologic data: The Mann–Kendall trend test under the scaling hypothesis. Journal of Hydrology, 349(3), 350–363. doi:10.1016/j.jhydrol.2007.11.009

  • Hamed, K. (2009). Exact distribution of the Mann–Kendall trend test statistic for persistent data. Journal of Hydrology, 365(1), 86–94. doi:10.1016/j.jhydrol.2008.11.024

  • Hamed, K. H., & Ramachandra Rao, A. (1998). A modified Mann–Kendall trend test for autocorrelated data. Journal of Hydrology, 204(1), 182–196. doi:10.1016/S0022-1694(97)00125-X

  • Hipel, K. W., & McLeod, A. I. (2005). Time series modelling of water resources and environmental systems. Elsevier. http://www.stats.uwo.ca/faculty/aim/1994.

  • Hirsch, R. M., Alexander, R. B., & Smith, R. A. (1991). Selection of methods for the detection and estimation of trends in water quality. Water Resources Research, 27(5), 803–813. doi:10.1029/91WR00259

  • Institute of Standards and Industrial Research of Iran. (2009). Drinking water physical and chemical specifications (vol. ISIRI No. 1053 5th ed). Tehran.

  • Kahya, E., & Kalayci, S. (2004). Trend analysis of streamflow in Turkey. Journal of Hydrology, 289(1–4), 128–144. doi:10.1016/j.jhydrol.2003.11.006

    Article  Google Scholar 

  • Kantharaja, D., Lakkundi, T., Basavanna, M., & Manjappa, S. (2012). Spatial analysis of fluoride concentration in groundwaters of Shivani watershed area, Karnataka state, South India, through geospatial information system. Environmental Earth Sciences, 65(1), 67–76. doi:10.1007/s12665-011-1065-1

    Article  CAS  Google Scholar 

  • Kent, R., & Landon, M. K. (2013). Trends in concentrations of nitrate and total dissolved solids in public supply wells of the Bunker Hill, Lytle, Rialto, and Colton groundwater subbasins, San Bernardino County, California: Influence of legacy land use. Science of the Total Environment, 452, 125–136. doi:10.1016/j.scitotenv.2013.02.042

  • Keshavarzi, B., Moore, F., Esmaeili, A., & Rastmanesh, F. (2010). The source of fluoride toxicity in Muteh area, Isfahan, Iran. Environmental Earth Sciences, 61(4), 777–786. doi:10.1007/s12665-009-0390-0

  • Kundu, M. C., Mandal, B., & Hazra, G. C. (2009). Nitrate and fluoride contamination in groundwater of an intensively managed agroecosystem: A functional relationship. Science of the Total Environment, 407(8), 2771–2782. doi:10.1016/j.scitotenv.2008.12.048

    Article  CAS  Google Scholar 

  • Lins, H. F., & Slack, J. R. (1999). Streamflow trends in the United States. Geophysical Research Letters, 26(2), 227–230. doi:10.1029/1998gl900291

    Article  Google Scholar 

  • Meenakshi, & Maheshwari, R. (2006). Fluoride in drinking water and its removal. Journal of Hazardous Materials, 137(1), 456–463. doi:10.1016/j.jhazmat.2006.02.024

  • Mahvi, A. H., & Amini, H. (2011). Fluoride in drinking water (1st ed.). Tehran: Avay-e-Ghalam.

    Google Scholar 

  • Mahvi, A. H., Zazoli, M. A., Younecian, M., & Esfandiari, Y. (2006). Fluoride content of Iranian black tea and tea liquor. Fluoride, 39(4), 266–268.

    CAS  Google Scholar 

  • Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13, 245–259.

    Article  Google Scholar 

  • Mason, B. H., & Moore, C. B. (1987). Principles of geochemistry. New York: Wiley.

    Google Scholar 

  • Mesdaghinia, A., Vaghefi, K., Montazeri, A., Mohebbi, M., & Saeedi, R. (2010). Monitoring of fluoride in groundwater resources of Iran. Bulletin of Environmental Contamination and Toxicology, 84(4), 432–437. doi:10.1007/s00128-010-9950-y

    Article  CAS  Google Scholar 

  • Moghaddam, A. A., & Fijani, E. (2008). Distribution of fluoride in groundwater of Maku area, northwest of Iran. Environmental Geology, 56(2), 281–287. doi:10.1007/s00254-007-1163-2

  • Nouri, J., Mahvi, A. H., Babaei, A., & Ahmadpour, E. (2006). Regional pattern distribution of groundwater fluoride in the Shush aquifer of Khuzestan County, Iran. Fluoride, 39(4), 321.

    CAS  Google Scholar 

  • Ozsvath, D. (2009). Fluoride and environmental health: A review. Reviews in Environmental Science & Biotechnology, 8(1), 59–79. doi:10.1007/s11157-008-9136-9

    Article  CAS  Google Scholar 

  • Petersen, P. E., & Lennon, M. A. (2004). Effective use of fluorides for the prevention of dental caries in the 21st century: The WHO approach. Community Dentistry and Oral Epidemiology, 32(5), 319–321. doi:10.1111/j.1600-0528.2004.00175.x

  • R Core Team. (2012). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Rahmani, A., Rahmani, K., Dobaradaran, S., Mahvi, A. H., Mohamadjani, R., & Rahmani, H. (2010). Child dental caries in relation to fluoride and some inorganic constituents in drinking water in Arsanjan, Iran. Fluoride, 43(4), 179–186.

    CAS  Google Scholar 

  • Rao, M. J., Durgaiah, B., Saradhi, B. V., Jaisankar, G., Rao, D. P., & Ganesh, K. M. (2007). Spatial variability of groundwater chemical quality in part of Nalgonda district, Andhra Pradesh. Journal of the Geological Society of India, 69(5), 983–988.

    CAS  Google Scholar 

  • Raziei, T., Daryabari, J., Bordi, I., Modarres, R., & Pereira, L. S. (2014). Spatial patterns and temporal trends of daily precipitation indices in Iran. Climatic Change, 124(1–2), 239–253. doi:10.1007/s10584-014-1096-1

    Article  Google Scholar 

  • Singh, S. K., Srivastava, P. K., & Pandey, A. C. (2013). Fluoride contamination mapping of groundwater in Northern India integrated with geochemical indicators and GIS. Water Science and Technology-Water Supply, 13(6), 1513–1523. doi:10.2166/ws.2013.160

    Article  CAS  Google Scholar 

  • Sreedevi, P., Ahmed, S., Made, B., Ledoux, E., & Gandolfi, J.-M. (2006). Association of hydrogeological factors in temporal variations of fluoride concentration in a crystalline aquifer in India. Environmental Geology, 50(1), 1–11. doi:10.1007/s00254-005-0167-z

  • Turkes, M. (1996). Spatial and temporal analysis of annual rainfall variations in Turkey. International Journal of Climatology, 16(9), 1057–1076. doi:10.1002/(SICI)1097-0088(199609)16:9<1057::AID-JOC75>3.0.CO;2-D

  • Viswanathan, G., Jaswanth, A., & Gopalakrishnan, S. (2009). Mapping of fluoride endemic areas and assessment of fluoride exposure. Science of the Total Environment, 407(5), 1579–1587. doi:10.1016/j.scitotenv.2008.10.020

  • Vousoughi, F. D., Dinpashoh, Y., Aalami, M. T., & Jhajharia, D. (2013). Trend analysis of groundwater using non-parametric methods (case study: Ardabil plain). Stochastic Environmental Research and Risk Assessment, 27(2), 547–559. doi:10.1007/s00477-012-0599-4

    Article  Google Scholar 

  • WHO. (2011). Guidelines for drinking-water quality (4th ed.). Geneva: World Health Organization.

    Google Scholar 

  • Xu, Z. X., Takeuchi, K., & Ishidaira, H. (2003). Monotonic trend and step changes in Japanese precipitation. Journal of Hydrology, 279(1–4), 144–150. doi:10.1016/s0022-1694(03)00178-1

    Article  Google Scholar 

  • Yue, S., & Wang, C. (2004). The Mann–Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resources Management, 18(3), 201–218. doi:10.1023/B:WARM.0000043140.61082.60

  • Zhai, X. Y., Xia, J., & Zhang, Y. Y. (2014). Water quality variation in the highly disturbed Huai River Basin, China from 1994 to 2005 by multi-statistical analyses. Science of the Total Environment, 496, 594–606. doi:10.1016/j.scitotenv.2014.06.101

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors extend their sincerest gratitude to Drs. Mokhtar Mahdavi and Majid Ramezani Mehrian for their wholehearted contribution and advice. We also thank the reviewers and the editor for their valuable feedback.

Conflict of interest

The authors declare there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hassan Amini or Gholam Ali Haghighat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amini, H., Haghighat, G.A., Yunesian, M. et al. Spatial and temporal variability of fluoride concentrations in groundwater resources of Larestan and Gerash regions in Iran from 2003 to 2010. Environ Geochem Health 38, 25–37 (2016). https://doi.org/10.1007/s10653-015-9676-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-015-9676-1

Keywords

Navigation