Skip to main content

Advertisement

Log in

Intravascular Imaging for Peripheral Vascular Disease and Endovascular Intervention

  • Intravascular Imaging (A Truesdell, Section Editor)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Intravascular imaging has been increasingly incorporated into endovascular practice. The goal of this review is to explore the contemporary technologies used to perform intravascular imaging as well as the evidence supporting their use in the diagnostic assessment and treatment of peripheral vascular disease.

Recent Findings

Although intravascular imaging has been more extensively studied in the coronary vasculature, there is a growing body of literature studying its use in other vascular territories. There are unique advantages and disadvantages for the two most commonly employed imaging modalities—intravascular ultrasound (IVUS) and optical coherence tomography (OCT). Either may enhance the diagnostic capabilities of conventional angiography depending upon the clinical situation. IVUS and OCT guidance for angioplasty and stent sizing in peripheral interventions has been shown to be safe, feasible and in many instances, effective. Studies suggest that clinically relevant outcomes such as vessel primary patency and long-term patency may be improved by utilizing these imaging technologies.

Summary

While still employed as adjunctive modalities to angiography and peripheral intervention, IVUS or OCT may provide a potential pathway towards improving short- and long-term outcomes for a variety of vascular disease entities. At this time, further research is still warranted to better define the optimal role for these devices in non-coronary vascular beds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hong SJ, et al. Effect of intravascular ultrasound-guided vs angiography-guided everolimus-eluting stent implantation: the IVUS-XPL randomized clinical trial. Jama. 2015;314(20):2155–63.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang J, et al. Intravascular ultrasound versus angiography-guided drug-eluting stent implantation: the ULTIMATE trial. J Am Coll Cardiol. 2018;72(24):3126–37.

    Article  PubMed  Google Scholar 

  3. Gao XF, et al. Intravascular ultrasound guidance reduces cardiac death and coronary revascularization in patients undergoing drug-eluting stent implantation: results from a meta-analysis of 9 randomized trials and 4724 patients. Int J Card Imaging. 2019;35(2):239–47.

    Article  Google Scholar 

  4. Fujii K, et al. Stent underexpansion and residual reference segment stenosis are related to stent thrombosis after sirolimus-eluting stent implantation: an intravascular ultrasound study. J Am Coll Cardiol. 2005;45(7):995–8.

    Article  CAS  PubMed  Google Scholar 

  5. Tian NL, et al. Angiographic and clinical comparisons of intravascular ultrasound- versus angiography-guided drug-eluting stent implantation for patients with chronic total occlusion lesions: two-year results from a randomised AIR-CTO study. EuroIntervention. 2015;10(12):1409–17.

    Article  PubMed  Google Scholar 

  6. Chen L, et al. Intravascular ultrasound-guided drug-eluting stent implantation is associated with improved clinical outcomes in patients with unstable angina and complex coronary artery true bifurcation lesions. Int J Card Imaging. 2018;34(11):1685–96.

    Article  Google Scholar 

  7. Jakabcin J, et al. Long-term health outcome and mortality evaluation after invasive coronary treatment using drug eluting stents with or without the IVUS guidance. Randomized control trial. HOME DES IVUS. Catheter Cardiovasc Interv. 2010;75(4):578–83.

    Article  PubMed  Google Scholar 

  8. Kang SJ, Mintz GS. Outcomes with intravascular ultrasound-guided stent implantation: a meta-analysis of randomized trials in the era of drug-eluting stents. J Thorac Dis. 2016;8(8):E841–3.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bavishi C, et al. Intravascular ultrasound-guided vs angiography-guided drug-eluting stent implantation in complex coronary lesions: meta-analysis of randomized trials. Am Heart J. 2017;185:26–34.

    Article  PubMed  Google Scholar 

  10. •• Makris GC, et al. The role of intravascular ultrasound in lower limb revascularization in patients with peripheral arterial disease. Int Angiol. 2017;36(6):505–16 This study provided an analysis of thirteen studies where IVUS-guided peripheral arterial intervention was compared to angiographic-guided intervention, and demonstrated a significant benefit with regards to patency and amputation rates.

    Article  PubMed  Google Scholar 

  11. Panaich SS, et al. Intravascular ultrasound in lower extremity peripheral vascular interventions: variation in utilization and impact on in-hospital outcomes from the nationwide inpatient sample (2006-2011). J Endovasc Ther. 2016;23(1):65–75.

    Article  PubMed  Google Scholar 

  12. Lin E, Alessio A. What are the basic concepts of temporal, contrast, and spatial resolution in cardiac CT? J Cardiovasc Comput Tomogr. 2009;3(6):403–8.

    Article  PubMed  PubMed Central  Google Scholar 

  13. American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS). A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents developed in collaboration with the European Society of Cardiology endorsed by the Society of Cardiac Angiography and Interventions. Eur J Echocardiogr, 2001. 2(4): p. 299–313.

  14. Kume T, Uemura S. Current clinical applications of coronary optical coherence tomography. Cardiovasc Interv Ther. 2018;33(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  15. Tearney GJ, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol. 2012;59(12):1058–72.

    Article  PubMed  Google Scholar 

  16. Maehara A, et al. IVUS-guided versus OCT-guided coronary stent implantation: a critical appraisal. JACC Cardiovasc Imaging. 2017;10(12):1487–503.

    Article  PubMed  Google Scholar 

  17. Stefano GT, Mehanna E, Parikh SA. Imaging a spiral dissection of the superficial femoral artery in high resolution with optical coherence tomography—seeing is believing. Catheter Cardiovasc Interv. 2013;81(3):568–72.

    Article  PubMed  Google Scholar 

  18. Ali ZA, et al. Optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation (ILUMIEN III: OPTIMIZE PCI): a randomised controlled trial. Lancet. 2016;388(10060):2618–28.

    Article  PubMed  Google Scholar 

  19. Otake H, et al. Optical frequency domain imaging versus intravascular ultrasound in percutaneous coronary intervention (OPINION trial): results from the OPINION imaging study. JACC Cardiovasc Imaging. 2018;11(1):111–23.

    Article  PubMed  Google Scholar 

  20. Yin D, et al. Comparison of plaque morphology between peripheral and coronary artery disease (from the CLARITY and ADAPT-DES IVUS substudies). Coron Artery Dis. 2017;28(5):369–75.

    Article  PubMed  Google Scholar 

  21. Wei H, et al. The value of intravascular ultrasound imaging in diagnosis of aortic penetrating atherosclerotic ulcer. EuroIntervention. 2006;1(4):432–7.

    PubMed  Google Scholar 

  22. Hu W, et al. The potential value of intravascular ultrasound imaging in diagnosis of aortic intramural hematoma. J Geriatr Cardiol. 2011;8(4):224–9.

    PubMed  PubMed Central  Google Scholar 

  23. Diethrich EB, Irshad K, Reid DB. Virtual histology and color flow intravascular ultrasound in peripheral interventions. Semin Vasc Surg. 2006;19(3):155–62.

    Article  PubMed  Google Scholar 

  24. Fuchs M, et al. Ex vivo characterization of carotid plaques by intravascular ultrasonography and virtual histology: concordance with real plaque pathomorphology. J Cardiovasc Surg. 2017;58(1):55–64.

    Article  Google Scholar 

  25. Musialek P, et al. Safety of embolic protection device-assisted and unprotected intravascular ultrasound in evaluating carotid artery atherosclerotic lesions. Med Sci Monit. 2012;18(2):Mt7–18.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Iida O, et al. Efficacy of intravascular ultrasound in femoropopliteal stenting for peripheral artery disease with TASC II class A to C lesions. J Endovasc Ther. 2014;21(4):485–92.

    Article  PubMed  Google Scholar 

  27. Inglese L, Fantoni C, Sardana V. Can IVUS-virtual histology improve outcomes of percutaneous carotid treatment? J Cardiovasc Surg. 2009;50(6):735–44.

    CAS  Google Scholar 

  28. Yamada K, et al. Prediction of silent ischemic lesions after carotid artery stenting using virtual histology intravascular ultrasound. Cerebrovasc Dis. 2011;32(2):106–13.

    Article  PubMed  Google Scholar 

  29. Takumi T, et al. The association between renal atherosclerotic plaque characteristics and renal function before and after renal artery intervention. Mayo Clin Proc. 2011;86(12):1165–72.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yoshimura S, et al. Visualization of internal carotid artery atherosclerotic plaques in symptomatic and asymptomatic patients: a comparison of optical coherence tomography and intravascular ultrasound. AJNR Am J Neuroradiol. 2012;33(2):308–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Janosi RA, et al. Validation of intravascular ultrasound for measurement of aortic diameters: comparison with multi-detector computed tomography. Minim Invasive Ther Allied Technol. 2015;24(5):289–95.

    Article  PubMed  Google Scholar 

  32. Song TK, et al. Intravascular ultrasound use in the treatment of thoracoabdominal dissections, aneurysms, and transections. Semin Vasc Surg. 2006;19(3):145–9.

    Article  PubMed  Google Scholar 

  33. White RA, et al. Intraprocedural imaging: thoracic aortography techniques, intravascular ultrasound, and special equipment. J Vasc Surg. 2006;43 Suppl A:53a–61a.

    Article  PubMed  Google Scholar 

  34. Han SM, et al. Comparison of intravascular ultrasound- and centerline computed tomography-determined aortic diameters during thoracic endovascular aortic repair. J Vasc Surg. 2017;66(4):1184–91.

    Article  PubMed  Google Scholar 

  35. Hu W, et al. Value of intravascular ultrasound imaging in following up patients with replacement of the ascending aorta for acute type A aortic dissection. Chin Med J. 2008;121(21):2139–43.

    Article  PubMed  Google Scholar 

  36. Lortz J, et al. Intravascular ultrasound assisted sizing in thoracic endovascular aortic repair improves aortic remodeling in type B aortic dissection. PLoS One. 2018;13(4):e0196180.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Jiang JH, et al. The application of intravascular ultrasound imaging in the diagnosis of aortic dissection. Zhonghua Wai Ke Za Zhi. 2003;41(7):491–4.

    PubMed  Google Scholar 

  38. Jiang JH, et al. The application of intravascular ultrasound imaging in identifying the visceral artery in aortic dissection. Zhonghua Yi Xue Za Zhi. 2003;83(18):1580–2.

    PubMed  Google Scholar 

  39. Leshnower BG, et al. Aortic remodeling after endovascular repair of complicated acute type B aortic dissection. Ann Thorac Surg. 2017;103(6):1878–85.

    Article  PubMed  Google Scholar 

  40. Shi Z, et al. Outcomes and aortic remodelling after proximal thoracic endovascular aortic repair of post type B aortic dissection thoracic aneurysm. Vasa. 2016;45(4):331–6.

    Article  PubMed  Google Scholar 

  41. Lortz J, et al. Hemodynamic changes lead to alterations in aortic diameters and may challenge further stent graft sizing in acute aortic syndrome. J Thorac Dis. 2018;10(6):3482–9.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tutein Nolthenius RP, van den Berg JC, Moll FL. The value of intraoperative intravascular ultrasound for determining stent graft size (excluding abdominal aortic aneurysm) with a modular system. Ann Vasc Surg. 2000;14(4):311–7.

    Article  CAS  PubMed  Google Scholar 

  43. Husmann MJ, et al. Intravascular ultrasound-guided creation of re-entry sites to improve intermittent claudication in patients with aortic dissection. J Endovasc Ther. 2006;13(3):424–8.

    Article  PubMed  Google Scholar 

  44. Miki K, et al. Impact of intravascular ultrasound findings on long-term patency after self-expanding nitinol stent implantation in the iliac artery lesion. Heart Vessel. 2016;31(4):519–27.

    Article  Google Scholar 

  45. Arko F, et al. Use of intravascular ultrasound improves long-term clinical outcome in the endovascular management of atherosclerotic aortoiliac occlusive disease. J Vasc Surg. 1998;27(4):614–23.

    Article  CAS  PubMed  Google Scholar 

  46. Buckley CJ, et al. Intravascular ultrasound scanning improves long-term patency of iliac lesions treated with balloon angioplasty and primary stenting. J Vasc Surg. 2002;35(2):316–23.

    Article  PubMed  Google Scholar 

  47. Kasaoka S, et al. Angiographic and intravascular ultrasound predictors of in-stent restenosis. J Am Coll Cardiol. 1998;32(6):1630–5.

    Article  CAS  PubMed  Google Scholar 

  48. Cheneau E, et al. Predictors of subacute stent thrombosis: results of a systematic intravascular ultrasound study. Circulation. 2003;108(1):43–7.

    Article  PubMed  Google Scholar 

  49. Kumakura H, et al. 15-year patency and life expectancy after primary stenting guided by intravascular ultrasound for iliac artery lesions in peripheral arterial disease. JACC Cardiovasc Interv. 2015;8(14):1893–901.

    Article  PubMed  Google Scholar 

  50. Hitchner E, et al. A prospective evaluation of using IVUS during percutaneous superficial femoral artery interventions. Ann Vasc Surg. 2015;29(1):28–33.

    Article  PubMed  Google Scholar 

  51. Miki K, et al. Impact of post-procedural intravascular ultrasound findings on long-term results following self-expanding nitinol stenting in superficial femoral artery lesions. Circ J. 2013;77(6):1543–50.

    Article  PubMed  Google Scholar 

  52. • Miki K, et al. Intravascular ultrasound-derived stent dimensions as predictors of angiographic restenosis following nitinol stent implantation in the superficial femoral artery. J Endovasc Ther. 2016;23(3):424–32 This study examined IVUS-derived post-procedure parameters in superficial femoral artery interventions and their association with in-stent restenosis, suggesting that adequate stent expansion improved long-term patency.

    Article  PubMed  Google Scholar 

  53. Shammas NW, Torey JT, Shammas WJ. Dissections in peripheral vascular interventions: a proposed classification using intravascular ultrasound. J Invasive Cardiol. 2018;30(4):145–6.

    PubMed  Google Scholar 

  54. Kusuyama T, Iida H, Mitsui H. Intravascular ultrasound complements the diagnostic capability of carbon dioxide digital subtraction angiography for patients with allergies to iodinated contrast medium. Catheter Cardiovasc Interv. 2012;80(6):E82–6.

    Article  PubMed  Google Scholar 

  55. Hoshino Y, et al. Successful treatment of renovascular hypertension due to fibromuscular dysplasia by intravascular ultrasound-guided atherectomy. Nephron. 2002;91(3):521–5.

    Article  PubMed  Google Scholar 

  56. Gowda MS, et al. Complementary roles of color-flow duplex imaging and intravascular ultrasound in the diagnosis of renal artery fibromuscular dysplasia: should renal arteriography serve as the “gold standard”? J Am Coll Cardiol. 2003;41(8):1305–11.

    Article  PubMed  Google Scholar 

  57. Jain G, et al. Percutaneous retrograde revascularization of the occluded celiac artery for chronic mesenteric ischemia using intravascular ultrasound guidance. Cardiovasc Interv Ther. 2013;28(3):307–12.

    Article  CAS  PubMed  Google Scholar 

  58. Iwase K, et al. Isolated dissecting aneurysm of the superior mesenteric artery: intravascular ultrasound (IVUS) images. Hepatogastroenterology. 2007;54(76):1161–3.

    PubMed  Google Scholar 

  59. Liu R, et al. An optical coherence tomography assessment of stent strut apposition based on the presence of lipid-rich plaque in the carotid artery. J Endovasc Ther. 2015;22(6):942–9.

    Article  PubMed  Google Scholar 

  60. Chiocchi M, et al. Intravascular ultrasound assisted carotid artery stenting: randomized controlled trial. Preliminary results on 60 patients. J Cardiovasc Med (Hagerstown). 2019;20(4):248–52.

    Article  Google Scholar 

  61. Okazaki T, et al. Detection of in-stent protrusion (ISP) by intravascular ultrasound during carotid stenting: usefulness of stent-in-stent placement for ISP. Eur Radiol. 2019;29(1):77–84.

    Article  CAS  PubMed  Google Scholar 

  62. Kotsugi M, et al. Carotid artery stenting: investigation of plaque protrusion incidence and prognosis. JACC Cardiovasc Interv. 2017;10(8):824–31.

    Article  PubMed  Google Scholar 

  63. Shinozaki N, Ogata N, Ikari Y. Plaque protrusion detected by intravascular ultrasound during carotid artery stenting. J Stroke Cerebrovasc Dis. 2014;23(10):2622–5.

    Article  PubMed  Google Scholar 

  64. Hong MK, et al. Long-term outcomes of minor plaque prolapsed within stents documented with intravascular ultrasound. Catheter Cardiovasc Interv. 2000;51(1):22–6.

    Article  CAS  PubMed  Google Scholar 

  65. Kono AK, et al. Usefulness of intravascular ultrasonography for treatment of a ruptured vertebral dissecting aneurysm. Radiat Med. 2006;24(8):577–82.

    Article  PubMed  Google Scholar 

  66. Yoon WK, et al. Intravascular ultrasonography-guided stent angioplasty of an extracranial vertebral artery dissection. J Neurosurg. 2008;109(6):1113–8.

    Article  PubMed  Google Scholar 

  67. Chung WJ, et al. Clinical impact of intravascular ultrasound guidance during endovascular treatment of subclavian artery disease. J Endovasc Ther. 2017;24(5):731–8.

    Article  PubMed  Google Scholar 

  68. Chiou AC. Intravascular ultrasound-guided bedside placement of inferior vena cava filters. Semin Vasc Surg. 2006;19(3):150–4.

    Article  PubMed  Google Scholar 

  69. Hislop S, et al. Correlation of intravascular ultrasound and computed tomography scan measurements for placement of intravascular ultrasound-guided inferior vena cava filters. J Vasc Surg. 2014;59(4):1066–72.

    Article  PubMed  Google Scholar 

  70. Hodgkiss-Harlow K, et al. Technical factors affecting the accuracy of bedside IVC filter placement using intravascular ultrasound. Vasc Endovasc Surg. 2012;46(4):293–9.

    Article  Google Scholar 

  71. Ganguli S, et al. Comparison of inferior vena cava filters placed at the bedside via intravenous ultrasound guidance versus fluoroscopic guidance. Ann Vasc Surg. 2017;39:250–5.

    Article  PubMed  Google Scholar 

  72. Hager ES, et al. Outcomes of endovascular intervention for May-Thurner syndrome. J Vasc Surg Venous Lymphat Disord. 2013;1(3):270–5.

    Article  PubMed  Google Scholar 

  73. Raju S, et al. Optimal sizing of iliac vein stents. Phlebology. 2018;33(7):451–7.

    Article  PubMed  Google Scholar 

  74. Rizvi SA, et al. Stent patency in patients with advanced chronic venous disease and nonthrombotic iliac vein lesions. J Vasc Surg Venous Lymphat Disord. 2018;6(4):457–63.

    Article  PubMed  Google Scholar 

  75. Shammas NW, et al. Intravascular ultrasound assessment and correlation with angiographic findings demonstrating femoropopliteal arterial dissections post atherectomy: results from the iDissection study. J Invasive Cardiol. 2018;30(7):240–4.

    PubMed  Google Scholar 

  76. Schwindt AG, et al. Lower extremity revascularization using optical coherence tomography-guided directional atherectomy: final results of the evaluation of the pantheris optical coherence tomography imaging atherectomy system for use in the peripheral vasculature (VISION) study. J Endovasc Ther. 2017;24(3):355–66.

    Article  PubMed  Google Scholar 

  77. Kuku KO, et al. Intravascular ultrasound assessment of the effect of laser energy on the arterial wall during the treatment of femoro-popliteal lesions: a CliRpath excimer laser system to enlarge lumen openings (CELLO) registry study. Int J Card Imaging. 2018;34(3):345–52.

    Article  Google Scholar 

  78. Babaev A, et al. Orbital atherectomy plaque modification assessment of the femoropopliteal artery via intravascular ultrasound (TRUTH study). Vasc Endovasc Surg. 2015;49(7):188–94.

    Article  Google Scholar 

  79. Armstrong EJ, Bishu K, Waldo SW. Endovascular treatment of infrapopliteal peripheral artery disease. Curr Cardiol Rep. 2016;18(4):34.

    Article  PubMed  Google Scholar 

  80. Reekers JA, Bolia A. Percutaneous intentional extraluminal (subintimal) recanalization: how to do it yourself. Eur J Radiol. 1998;28(3):192–8.

    Article  CAS  PubMed  Google Scholar 

  81. Spinosa DJ, et al. Subintimal arterial flossing with antegrade-retrograde intervention (SAFARI) for subintimal recanalization to treat chronic critical limb ischemia. J Vasc Interv Radiol. 2005;16(1):37–44.

    Article  PubMed  Google Scholar 

  82. Gandini R, et al. The “Safari” technique to perform difficult subintimal infragenicular vessels. Cardiovasc Intervent Radiol. 2007;30(3):469–73.

    Article  PubMed  Google Scholar 

  83. Saketkhoo RR, et al. Percutaneous bypass: subintimal recanalization of peripheral occlusive disease with IVUS guided luminal re-entry. Tech Vasc Interv Radiol. 2004;7(1):23–7.

    Article  PubMed  Google Scholar 

  84. Schaefers JF, et al. Outcome after crossing femoropopliteal chronic total occlusions based on optical coherence tomography guidance. Vasc Endovasc Surg. 2018;52(1):27–33.

    Article  Google Scholar 

  85. Baker AC, et al. Technical and early outcomes using ultrasound-guided reentry for chronic total occlusions. Ann Vasc Surg. 2015;29(1):55–62.

    Article  PubMed  Google Scholar 

  86. Jones DA, et al. Angiography alone versus angiography plus optical coherence tomography to guide percutaneous coronary intervention: outcomes from the Pan-London PCI cohort. JACC Cardiovasc Interv. 2018;11(14):1313–21.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael N. Young.

Ethics declarations

Conflict of Interest

All authors declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Intravascular Imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rothstein, E., Aronow, H., Hawkins, B.M. et al. Intravascular Imaging for Peripheral Vascular Disease and Endovascular Intervention. Curr Cardiovasc Imaging Rep 13, 9 (2020). https://doi.org/10.1007/s12410-020-9526-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12410-020-9526-0

Keywords

Navigation