Skip to main content

Advertisement

Log in

Intravascular Ultrasound in Endovascular Interventions for Peripheral Artery Disease

  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Abstract

Purpose of review

This article reviews the contemporary evidence for the use of intravascular ultrasound (IVUS) for peripheral arterial disease (PAD) endovascular interventions.

Recent findings

Earlier observational studies have shown that IVUS use for endovascular interventions is associated with improved patency rates and freedom from restenosis. Recently, a randomized trial demonstrated that IVUS was associated with a significantly larger mean vessel diameter than angiography, higher freedom from binary restenosis at 12 months. Recent large observational studies have suggested that IVUS is also associated with improved clinical outcomes. One study of 543,488 Medicare beneficiaries showed that IVUS use was associated with lower risk of major adverse limb events, including amputation and arterial thrombosis. Another Japanese analysis of 85,649 showed that the IVUS was associated with lower incidence of amputation at 12 months.

Summary

The benefit of IVUS use in coronary interventions is well established, but the translation of these benefits to endovascular interventions has lagged behind, with a growing body of evidence supporting its use, mainly observational studies. Randomized trials are emerging to better document the benefit of IVUS in endovascular interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Fowkes FGR, Rudan D, Rudan I, Aboyans V, Denenberg JO, McDermott MM, et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. The Lancet. 2013;382:1329–40.

    Article  Google Scholar 

  2. Song P, Fang Z, Wang H, Cai Y, Rahimi K, Zhu Y, et al. Global and regional prevalence, burden, and risk factors for carotid atherosclerosis: a systematic review, meta-analysis, and modelling study. Lancet Glob Health. 2020;8:e721–9.

    Article  PubMed  Google Scholar 

  3. Eb D, K I, Db R. Virtual histology and color flow intravascular ultrasound in peripheral interventions. Seminars in vascular surgery [Internet]. Semin Vasc Surg; 2006 [cited 2023 Mar 20];19. Available from: https://pubmed.ncbi.nlm.nih.gov/16996418/

  4. Duran C, Bismuth J. Advanced imaging in limb salvage. Methodist DeBakey Cardiovascular Journal. Methodist DeBakey Heart & Vascular Center; 2012;8:28.

  5. Anantha-Narayanan M, Doshi RP, Patel K, Sheikh AB, Llanos-Chea F, Abbott JD, et al. Contemporary trends in hospital admissions and outcomes in patients with critical limb ischemia. Circulation: Cardiovascular Quality and Outcomes. American Heart Association; 2021;14:e007539.

  6. Md D, Gm A, Mr J, T O, Rr S, Hb S, et al. Durable clinical effectiveness with paclitaxel-eluting stents in the femoropopliteal artery: 5-year results of the Zilver PTX randomized trial. Circulation [Internet]. Circulation; 2016 [cited 2023 Mar 20];133. Available from: https://pubmed.ncbi.nlm.nih.gov/26969758/

  7. K R, Mr J, Cj W, K R-S, C M-H, Dc M, et al. Trial of a paclitaxel-coated balloon for femoropopliteal artery disease. The New England journal of medicine [Internet]. N Engl J Med; 2015 [cited 2023 Mar 20];373. Available from: https://pubmed.ncbi.nlm.nih.gov/26106946/

  8. Vs K, Ml P, Pd B, Sp N, Mj E, Dg C, et al. Angiography underestimates peripheral atherosclerosis: lumenography revisited. Journal of endovascular therapy : an official journal of the International Society of Endovascular Specialists [Internet]. J Endovasc Ther; 2008 [cited 2023 Mar 20];15. Available from: https://pubmed.ncbi.nlm.nih.gov/18254670/

  9. Mariani J, Guedes C, Soares P, Zalc S, Campos CM, Lopes AC, et al. Intravascular ultrasound guidance to minimize the use of iodine contrast in percutaneous coronary intervention: the MOZART (Minimizing cOntrast utiliZation With IVUS Guidance in coRonary angioplasTy) randomized controlled trial. JACC Cardiovasc Interv. 2014;7:1287–93.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Räber L, Mintz GS, Koskinas KC, Johnson TW, Holm NR, Onuma Y, et al. Clinical use of intracoronary imaging. Part 1: guidance and optimization of coronary interventions. An expert consensus document of the European Association of Percutaneous Cardiovascular Interventions. EuroIntervention. 2018;14:656–77.

  11. Jang J-S, Song Y-J, Kang W, Jin H-Y, Seo J-S, Yang T-H, et al. Intravascular ultrasound-guided implantation of drug-eluting stents to improve outcome: a meta-analysis. JACC Cardiovasc Interv. 2014;7:233–43.

    Article  PubMed  Google Scholar 

  12. •• Natesan S, Mosarla RC, Parikh SA, Rosenfield K, Suomi J, Chalyan D, et al. Intravascular ultrasound in peripheral venous and arterial interventions: a contemporary systematic review and grading of the quality of evidence. Vascular Medicine [Internet]. SAGE PublicationsSage UK: London, England; 2022 [cited 2023 Mar 24]; Available from: https://journals.sagepub.com/doi/epub/10.1177/1358863X221092817. The latest systematic review evaluating 29 studies of IVUS use in peripheral arterial disease.

  13. •• Allan RB, Puckridge PJ, Spark JI, Delaney CL. The impact of intravascular ultrasound on femoropopliteal artery endovascular interventions: A randomized controlled trial. JACC: Cardiovascular Interventions. 2022;15:536–46. The first randomized trial evaluating the role of IVUS in femoropopliteal interventions and demonstrated that IVUS was associated with higher freedom from binary restenosis at 12 months than angiography alone (72.4% vs. 55.4%; p = 0.008).

  14. • Divakaran S, Parikh SA, Hawkins BM, Chen S, Song Y, Banerjee S, et al. Temporal trends, practice variation, and associated outcomes with IVUS use during peripheral arterial intervention. JACC: Cardiovascular Interventions. American College of Cardiology Foundation; 2022;15:2080–90. The largest peripheral intervention study with data from 543,488 Medicare beneficiaries undergoing endovascular intervention between 2016 and 2019 and reported an increase in the use of IVUS since 2016 and also showed that IVUS was associated with a lower risk of major adverse limb events, including amputation and arterial thrombosis (adjusted hazard ratio, 0.73; 95% confidence interval (CI) 0.70–0.75; p = 0.0001) as compared with no IVUS.

  15. Iida O, Takahara M, Soga Y, Suzuki K, Hirano K, Kawasaki D, et al. Efficacy of intravascular ultrasound in femoropopliteal stenting for peripheral artery disease with TASC II class A to C lesions. J Endovasc Ther. 2014;21:485–92.

    Article  PubMed  Google Scholar 

  16. Kumakura H, Kanai H, Araki Y, Hojo Y, Iwasaki T, Ichikawa S. 15-year patency and life expectancy after primary stenting guided by intravascular ultrasound for iliac artery lesions in peripheral arterial disease. JACC Cardiovasc Interv. 2015;8:1893–901.

    Article  PubMed  Google Scholar 

  17. Miki K, Fujii K, Tanaka T, Yanaka K, Yoshihara N, Nishimura M, et al. Impact of IVUS-derived vessel size on midterm outcomes after stent implantation in femoropopliteal lesions. J Endovasc Ther. 2020;27:77–85.

    Article  PubMed  Google Scholar 

  18. Krishnan P, Tarricone A, K-Raman P, Majeed F, Kapur V, Gujja K, et al. Intravascular ultrasound guided directional atherectomy versus directional atherectomy guided by angiography for the treatment of femoropopliteal in-stent restenosis. Ther Adv Cardiovasc Dis. 2018;12:17–22.

  19. Fujihara M, Kozuki A, Tsubakimoto Y, Takahara M, Shintani Y, Fukunaga M, et al. Lumen gain after endovascular therapy in calcified superficial femoral artery occlusive disease assessed by intravascular ultrasound (CODE study). J Endovasc Ther. 2019;26:322–30.

    Article  PubMed  Google Scholar 

  20. Araki M, Hirano K, Nakano M, Ito Y, Ishimori H, Yamawaki M, et al. Two-year outcome of the self-expandable stent for chronic total occlusion of the iliac artery. Cardiovasc Interv Ther. 2014;29:40–6.

    Article  PubMed  Google Scholar 

  21. Tsujimura T, Takahara M, Iida O, Yamauchi Y, Shintani Y, Sugano T, et al. Intravascular ultrasound imaging during aortoiliac stenting: no impact on outcomes at 1 year. J Endovasc Ther. 2021;28:139–45.

    Article  PubMed  Google Scholar 

  22. Tsujimura T, Iida O, Takahara M, Soga Y, Yamaoka T, Fujihara M, et al. Clinical impact of intravascular ultrasound-guided fluoropolymer-based drug-eluting stent implantation for femoropopliteal lesions. JACC Cardiovasc Interv. 2022;15:1569–78.

    Article  PubMed  Google Scholar 

  23. Kurata N, Iida O, Takahara M, Asai M, Masuda M, Okamoto S, et al. Clinical impact of the size of drug-coated balloon therapy on restenosis rate in femoropopliteal lesions. J Endovasc Ther. 2022;15266028221081082.

  24. Soga Y, Takahara M, Ito N, Katsuki T, Imada K, Hiramori S, et al. Clinical impact of intravascular ultrasound-guided balloon angioplasty in patients with chronic limb threatening ischemia for isolated infrapopliteal lesion. Catheter Cardiovasc Interv. 2021;97:E376–84.

    Article  PubMed  Google Scholar 

  25. Fujihara M, Yazu Y, Takahara M. Intravascular ultrasound-guided interventions for below-the-knee disease in patients with chronic limb-threatening ischemia. J Endovasc Ther. 2020;27:565–74.

    Article  PubMed  Google Scholar 

  26. Shammas NW, Torey JT, Shammas WJ, Jones-Miller S, Shammas GA. Intravascular ultrasound assessment and correlation with angiographic findings demonstrating femoropopliteal arterial dissections post atherectomy: results from the iDissection study. J Invasive Cardiol. 2018;30:240–4.

    PubMed  Google Scholar 

  27. Baker AC, Humphries MD, Noll RE, Salhan N, Armstrong EJ, Williams TK, et al. Technical and early outcomes using ultrasound-guided reentry for chronic total occlusions. Ann Vasc Surg. 2015;29:55–62.

    Article  PubMed  Google Scholar 

  28. Buckley CJ, Arko FR, Lee S, Mettauer M, Little D, Atkins M, et al. Intravascular ultrasound scanning improves long-term patency of iliac lesions treated with balloon angioplasty and primary stenting. J Vasc Surg. 2002;35:316–23.

    Article  PubMed  Google Scholar 

  29. Arthurs ZM, Bishop PD, Feiten LE, Eagleton MJ, Clair DG, Kashyap VS. Evaluation of peripheral atherosclerosis: a comparative analysis of angiography and intravascular ultrasound imaging. J Vasc Surg. 2010;51:933–8; discussion 939.

  30. E E, N M, P B, Q C, B G, G R, et al. Vascular Assessment for transcatheter aortic valve replacement: intravascular ultrasound compared with computed tomography. The Journal of invasive cardiology [Internet]. J Invasive Cardiol; 2016 [cited 2023 Mar 27];28. Available from: https://pubmed.ncbi.nlm.nih.gov/27922808/

  31. Pliagas G, Saab F, Stavroulakis K, Bisdas T, Finton S, Heaney C, et al. Intravascular ultrasound imaging versus digital subtraction angiography in patients with peripheral vascular disease. J Invasive Cardiol. 2020;32:99–103.

    PubMed  Google Scholar 

  32. Kuku KO, Garcia-Garcia HM, Finizio M, Melaku GD, Wilson VA, Beyene SS, et al. Comparison of angiographic and intravascular ultrasound vessel measurements in infra-popliteal endovascular interventions: the below-the-knee calibration study. Cardiovasc Revasc Med. 2022;35:35–41.

    Article  PubMed  Google Scholar 

  33. Shammas NW, Shammas WJ, Jones-Miller S, Torey JT, Armstrong EJ, Radaideh Q, et al. Optimal vessel sizing and understanding dissections in infrapopliteal interventions: data from the iDissection below the knee study. J Endovasc Ther. 2020;27:575–80.

    Article  PubMed  Google Scholar 

  34. D Y, A M, Tm S, Jj R, V R, Mt F, et al. Intravascular ultrasound validation of contemporary angiographic scores evaluating the severity of calcification in peripheral arteries. Journal of endovascular therapy : an official journal of the International Society of Endovascular Specialists [Internet]. J Endovasc Ther; 2017 [cited 2023 Mar 27];24. Available from: https://pubmed.ncbi.nlm.nih.gov/28504047/

  35. Iida O, Takahara M, Soga Y, Fujihara M, Kawasaki D, Hirano K, et al. Vessel diameter evaluated by intravascular ultrasound versus angiography. J Endovasc Ther. 2022;29:343–9.

    Article  PubMed  Google Scholar 

  36. Tielbeek AV, Vroegindeweij D, Buth J, Schol FP, Mali WP. Comparison of intravascular ultrasonography and intraarterial digital subtraction angiography after directional atherectomy of short lesions in femoropopliteal arteries. J Vasc Surg. 1996;23:436–45.

    Article  CAS  PubMed  Google Scholar 

  37. Colli R, Di Stasi C, Modugno P, Orlando G, Cavallaro A. Intravascular ultrasound in the endovascular management of atherosclerotic peripheral occlusive disease. Chir Ital. 2004;56:229–38.

    PubMed  Google Scholar 

  38. Navarro F, Sullivan TM, Bacharach JM. Intravascular ultrasound assessment of iliac stent procedures. J Endovasc Ther. 2000;7:315–9.

    Article  CAS  PubMed  Google Scholar 

  39. Arko F, McCollough R, Manning L, Buckley C. Use of intravascular ultrasound in the endovascular management of atherosclerotic aortoiliac occlusive disease. Am J Surg. 1996;172:546–9; discussion 549–550.

  40. Hitchner E, Zayed M, Varu V, Lee G, Aalami O, Zhou W. A prospective evaluation of using IVUS during percutaneous superficial femoral artery interventions. Ann Vasc Surg. 2015;29:28–33.

    Article  PubMed  Google Scholar 

  41. Secemsky EA, Mosarla RC, Rosenfield K, Kohi M, Lichtenberg M, Meissner M, et al. Appropriate use of intravascular ultrasound during arterial and venous lower extremity interventions. JACC Cardiovasc Interv. 2022;15:1558–68.

    Article  PubMed  Google Scholar 

  42. Rogers JH, Lasala JM. Coronary artery dissection and perforation complicating percutaneous coronary intervention. J Invasive Cardiol. 2004;16:493–9.

    PubMed  Google Scholar 

  43. Shammas NW, Torey JT, Shammas WJ. Dissections in peripheral vascular interventions: a proposed classification using intravascular ultrasound. J Invasive Cardiol. 2018;30:145–6.

    PubMed  Google Scholar 

  44. Tarricone A, Ali Z, Rajamanickam A, Gujja K, Kapur V, Purushothaman K-R, et al. Histopathological evidence of adventitial or medial injury is a strong predictor of restenosis during directional atherectomy for peripheral artery disease. J Endovasc Ther. 2015;22:712–5.

    Article  PubMed  Google Scholar 

  45. Tielbeek AV, Vroegindeweij D, Gussenhoven EJ, Buth J, Landman GH. Evaluation of directional atherectomy studied by intravascular ultrasound in femoropopliteal artery stenosis. Cardiovasc Intervent Radiol. 1997;20:413–9.

    Article  CAS  PubMed  Google Scholar 

  46. Nw S, Wj S, S J-M, Q R, Ga S. Femoropopliteal arterial dissections post flex vessel prep and adjunctive angioplasty: results of the flex iDissection study. The Journal of invasive cardiology [Internet]. J Invasive Cardiol; 2019 [cited 2023 Mar 27];31. Available from: https://pubmed.ncbi.nlm.nih.gov/31034434/

  47. Pasterkamp G, Spijkerboer AM, Mali WP, Borst C. Residual stenosis determined by intravascular ultrasound and duplex ultrasound after balloon angioplasty of the superficial femoral artery. Ultrasound Med Biol. 1996;22:801–6.

    Article  CAS  PubMed  Google Scholar 

  48. Miyauchi E, Okui H, Yuasa T, Oketani N, Ohishi M. Adventitial cystic disease in the popliteal artery diagnosed by intravascular ultrasound imaging. Cureus. 15:e34362.

  49. Banerjee S, Shishehbor MH, Mustapha JA, Armstrong EJ, Ansari M, Rundback JH, et al. A percutaneous crossing algorithm for femoropopliteal and tibial artery chronic total occlusions (PCTO algorithm). J Invasive Cardiol. 2019;31:111–9.

    PubMed  Google Scholar 

  50. A K, H J-S, H L, H X, H K, A P, et al. Comparative assessment of patient outcomes with intraluminal or subintimal crossing of infrainguinal peripheral artery chronic total occlusions. Vascular medicine (London, England) [Internet]. Vasc Med; 2018 [cited 2023 Mar 27];23. Available from: https://pubmed.ncbi.nlm.nih.gov/29105577/

  51. Lipsitz EC, Ohki T, Veith FJ, Suggs WD, Wain RA, Cynamon J, et al. Does subintimal angioplasty have a role in the treatment of severe lower extremity ischemia? J Vasc Surg. 2003;37:386–91.

    Article  PubMed  Google Scholar 

  52. Saket RR, Razavi MK, Padidar A, Kee ST, Sze DY, Dake MD. Novel intravascular ultrasound-guided method to create transintimal arterial communications: initial experience in peripheral occlusive disease and aortic dissection. J Endovasc Ther. 2004;11:274–80.

    Article  PubMed  Google Scholar 

  53. London NJ, Srinivasan R, Naylor AR, Hartshorne T, Ratliff DA, Bell PR, et al. Subintimal angioplasty of femoropopliteal artery occlusions: the long-term results. Eur J Vasc Surg. 1994;8:148–55.

    Article  CAS  PubMed  Google Scholar 

  54. Vn K, Jl E, Pk H, Je R. Intravascular ultrasound-guided true lumen reentry device for recanalization of unilateral chronic total occlusion of iliac arteries: technique and follow-up. Annals of vascular surgery [Internet]. Ann Vasc Surg; 2010 [cited 2023 Mar 27];24. Available from: https://pubmed.ncbi.nlm.nih.gov/20363107/

  55. Kawasaki D, Tsujino T, Fujii K, Masutani M, Ohyanagi M, Masuyama T. Novel use of ultrasound guidance for recanalization of iliac, femoral, and popliteal arteries. Catheter Cardiovasc Interv. 2008;71:727–33.

    Article  PubMed  Google Scholar 

  56. Saketkhoo RR, Razavi MK, Padidar A, Kee ST, Sze DY, Dake MD. Percutaneous bypass: subintimal recanalization of peripheral occlusive disease with IVUS guided luminal re-entry. Tech Vasc Interv Radiol. 2004;7:23–7.

    Article  PubMed  Google Scholar 

  57. Jacobs DL, Motaganahalli RL, Cox DE, Wittgen CM, Peterson GJ. True lumen re-entry devices facilitate subintimal angioplasty and stenting of total chronic occlusions: initial report. J Vasc Surg. 2006;43:1291–6.

    Article  PubMed  Google Scholar 

  58. Ac B, Md H, Re N, N S, Ej A, Tk W, et al. Technical and early outcomes using ultrasound-guided reentry for chronic total occlusions. Annals of vascular surgery [Internet]. Ann Vasc Surg; 2015 [cited 2023 Mar 27];29. Available from: https://pubmed.ncbi.nlm.nih.gov/25449989/

  59. Schiele F, Meneveau N, Seronde M-F, Caulfield F, Pisa B, Arveux P, et al. Medical costs of intravascular ultrasound optimization of stent deployment. Results of the multicenter randomized “REStenosis after Intravascular ultrasound STenting” (RESIST) study. Int J Cardiovasc Intervent. 2000;3:207–13.

  60. Bk K, X H, J K, J Z, J J, Jy H, et al. Fractional flow reserve or intravascular ultrasonography to guide PCI. The New England journal of medicine [Internet]. N Engl J Med; 2022 [cited 2023 Apr 1];387. Available from: https://pubmed.ncbi.nlm.nih.gov/36053504/

  61. Iida O, Takahara M, Soga Y, Yamaoka T, Fujihara M, Kawasaki D, et al. 1-year outcomes of fluoropolymer-based drug-eluting stent in femoropopliteal practice: predictors of restenosis and aneurysmal degeneration. JACC: Cardiovascular Interventions. 2022;15:630–8.

  62. Setogawa N, Ohbe H, Matsui H, Yasunaga H. Amputation after endovascular therapy with and without intravascular ultrasound guidance: a nationwide propensity score–matched study. Circulation: Cardiovascular Interventions. American Heart Association; 2023;16:e012451.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Islam Y. Elgendy MD, FACC, FAHA, FSCAI, FSVM, FESC, FACP.

Ethics declarations

Conflict of Interest

Mohamed Khedr declares that he has no conflict of interest. Michael Megaly declares that he has no conflict of interest. Islam Y. Elgendy declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khedr, M., Megaly, M. & Elgendy, I.Y. Intravascular Ultrasound in Endovascular Interventions for Peripheral Artery Disease. Curr Treat Options Cardio Med 25, 347–358 (2023). https://doi.org/10.1007/s11936-023-00997-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11936-023-00997-2

Keywords

Navigation