Skip to main content
Log in

Endovascular Treatment of Infrapopliteal Peripheral Artery Disease

  • Interventional Cardiology (S Rao, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Endovascular treatment of infrapopliteal disease is focused on the treatment of patients with rest pain or critical limb ischemia (CLI) due to severe atherosclerotic disease. While the evidence base surrounding the comparative effectiveness of endovascular intervention vs. surgery is lacking, many operators have adopted an “endovascular first” approach to the treatment of infrapopliteal atherosclerotic disease due to the lower morbidity of these procedures. This manuscript reviews current data on the endovascular treatment of CLI, including a comparison of endovascular and surgical approaches, current indications for and outcomes with balloon angioplasty of infrapopliteal PAD, angiosome-guided revascularization, and emerging technologies to improve long-term vessel patency after endovascular intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Nehler MR, Duval S, Diao L, et al. Epidemiology of peripheral arterial disease and critical limb ischemia in an insured national population. J Vasc Surg. 2014;60:686–95. This article provides up-to-date estimates of critical limb ischemia prevalence among insured patients.

    Article  PubMed  Google Scholar 

  2. Norgren L, Hiatt WR, Dormandy JA, et al. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). J Vasc Surg. 2007;45(Suppl):1–67.

    Google Scholar 

  3. Abu Dabrh AM, Steffen MW, Undavalli C, et al. The natural history of untreated severe or critical limb ischemia. J Vasc Surg. 2015;S0741-5214.

  4. Bisdas T, Borowski M, Torsello G, et al. Current practice of first-line strategies in patients with critical limb ischemia. J Vasc Surg. 2015;62:965–73.

    Article  PubMed  Google Scholar 

  5. Singh GD, Armstrong EJ, Yeo KK, et al. Endovascular recanalization of infrapopliteal occlusions in patients with critical limb ischemia. J Vasc Surg. 2014;59:1300–7.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Abu Dabrh AM, Steffen MW, Asi N, et al. Bypass surgery versus endovascular interventions in severe or critical limb ischemia. J Vasc Surg. 2015;S0741-5214.

  7. Adam DJ, Beard JD, Cleveland T, Bell J, Bradbury AW, Forbes JF, et al. Bypass versus angioplasty in severe ischaemia of the leg (BASIL): multicentre, randomised controlled trial. Lancet. 2005;366:1925–34.

    Article  CAS  PubMed  Google Scholar 

  8. Bradbury A, Adam D, Bell J, et al. BASIL trial Participants. Bypass Versus Angioplasty in Severe Ischemia of the Leg (BASIL) trial: analysis of amputation free and overall survival by treatment received. J Vasc Surg. 2010;51:18S–31S.

    Article  PubMed  Google Scholar 

  9. Soga Y, Iida O, Takahara M, et al. Two-year life expectancy in patients with critical limb ischemia. J Am Coll Cardiol Intv. 2014;7:1444–9. This article identifies risk factors for 2-year mortality in CLI, which may help with risk stratification for treatment strategies.

    Article  Google Scholar 

  10. Shiraki T, Iida O, Takahara M, et al. Predictive scoring model of mortality after surgical or endovascular revascularization in patients with critical limb ischemia. J Vasc Surg. 2014;60:383–9.

    Article  PubMed  Google Scholar 

  11. Shiraki T, Iida O, Takahara M, et al. Predictors of 2-year mortality and risk stratification after surgical or endovascular revascularization of infrainguinal artery disease in hemodialysis patients with critical limb ischemia. J Endovasc Ther. 2015;22:719–24.

    Article  PubMed  Google Scholar 

  12. Farber A, Rosenfield K, Menard M. The BEST-CLI Trial: a multidisciplinary effort to assess which therapy is best for patients with critical limb ischemia. Tech Vasc Interv Radiol. 2014;17:221–4. This paper provides an overview of the BEST-CLI trial, which will be the largest ever trial of patients with critical limb ischemia.

    Article  PubMed  Google Scholar 

  13. BASIL-2: Bypass vs. angioplasty in severe ischaemia of the leg—2. http://www.isrctn.com/. ISRCTN27728689.

  14. Gray B, Diaz-Sandoval L, Dieter R, Jaff M, White C. Peripheral Vascular Disease Committee for the Society for Cardiovascular Angiography and Interventions. SCAI expert consensus statement for infrapopliteal arterial intervention appropriate use. Catheter Cardiovasc Interv 2014;84. This first attempts at appropriate use criteria for infrapopliteal endovascular intervention provides practical guidance on the indications for below-the-knee endovascular intervention.

  15. Conte MS, Bandyk DF, Clowes AW, Moneta GL, Seely L, Lorenz TJ, et al. Results of PREVENT III: a multicenter, randomized trial of edifoligide for the prevention of vein graft failure in lower extremity bypass surgery. J Vasc Surg. 2006;43:742–51.

    Article  PubMed  Google Scholar 

  16. Brass EP, Anthony R, Dormandy J, Hiatt WR, Jiao J, Nakanishi A, et al. Parenteral therapy with lipo-ecraprost, a lipid-based formulation of a PGE1 analog, does not alter six-month outcomes in patients with critical leg ischemia. J Vasc Surg. 2006;43:752–9.

    Article  PubMed  Google Scholar 

  17. Conte MS, Geraghty PJ, Bradbury AW, et al. Suggested objective performance goals and clinical trial design for evaluating catheter-based treatment of critical limb ischemia. J Vasc Surg. 2009;50:1462–73.

    Article  PubMed  Google Scholar 

  18. Iida O, Nakamura M, Yamauchi Y, et al. Endovascular treatment for infrainguinal vessels in patients with critical limb ischemia: the OLIVE registry, a prospective, multicenter study in Japan with 12-month follow-up. Circ Cardiovasc Interv. 2013;6:68–76.

    Article  PubMed  Google Scholar 

  19. Iida O, Nakamura M, Yamauchi Y, et al. Three-year outcomes of the OLIVE registry, a prospective multicenter study of patients with critical limb ischemia. J Am Coll Cardiol Intv. 2015;8:1493–502. This paper provides updated 3-year outcomes of critical limb ischemia in a large multicenter population of patients.

    Article  Google Scholar 

  20. Patel MR, Conte MS, Cutlip DE, et al. Evaluation and treatment of patients with lower extremity peripheral artery disease: consensus definitions from the Peripheral Academic Research Consortium (PARC). J Am Coll Cardiol. 2015;65:931–41.

    Article  PubMed  Google Scholar 

  21. Iida O, Soga Y, Hirano K, et al. Long-term results of direct and indirect endovascular revascularization based on the angiosome concept patients with critical limb ischemia presenting with isolated below-the-knee lesions. J Vasc Surg. 2012;55:363–70.

    Article  PubMed  Google Scholar 

  22. Iida O, Nanto S, Uematsu M, et al. Importance of the angiosome concept for endovascular therapy in patients with critical limb ischemia. Catheter Cardiovasc Interv. 2010;75:830–6.

    PubMed  Google Scholar 

  23. Kabra A, Suresh KR, Vivekanand V, et al. Outcome of angiosome and non-angiosome targeted revascularization in critical limb ischemia. J Vasc Surg. 2013;57:44–9.

    Article  PubMed  Google Scholar 

  24. Kret MR, Cheng D, Azarbal AF, et al. Utility of direct angiosome revascularization and runoff scores in predicting outcomes in patients undergoing revascularization for critical limb ischemia. J Vasc Surg. 2014;59:121–8.

    Article  PubMed  Google Scholar 

  25. Bosanquet DC, Glasbey JC, Williams IM, et al. Systematic review and meta-analysis or direct versus indirect angiosomal revascularization of infrapopliteal arteries. Eur J Vasc Endovasc Surg. 2014;48:88–97.

    Article  CAS  PubMed  Google Scholar 

  26. Iida O, Takahara M, Soga Y, et al. Worse limb prognosis for indirect versus direct endovascular revascularization only in patients with critical limb ischemia complicated with wound infection and diabetes mellitus. Eur J Vasc Endovasc Surg. 2013;46:575–82.

    Article  CAS  PubMed  Google Scholar 

  27. Iida O, Takahara M, Soga Y, et al. Impact of angiosome-oriented revascularization on clinical outcomes in critical limb ischemia patients without concurrent wound infection and diabetes. J Endovasc Ther. 2014;21:607–15.

    Article  PubMed  Google Scholar 

  28. Feiring AJ, Krahn M, Nelson L, et al. Preventing leg amputations in critical limb ischemia with below-the-knee drug-eluting stents. J Am Coll Cardiol. 2012;55:1580–9.

    Article  Google Scholar 

  29. Scheinert D, Katsanos K, Zeller T, et al. A prospective randomized multicenter comparison of balloon angioplasty and infrapopliteal stenting with the sirolimus-eluting stent in ischemic peripheral arterial disease. J Am Coll Cardiol. 2012;60:2290–5.

    Article  PubMed  Google Scholar 

  30. Bosiers M, Scheinert D, Peeters P, et al. Randomized comparison of everolimus-eluting versus bare-metal stents in patients with critical limb ischemia and infrapopliteal arterial occlusive disease. J Vasc Surg. 2012;55:390–9.

    Article  PubMed  Google Scholar 

  31. Rastan A, Brechtel K, Krankenberg H, et al. Sirolimus-eluting stents for treatment of infrapopliteal arteries reduce clinical event rate compared to bare-metal stents. J Am Coll Cardiol. 2012;60:587–91.

    Article  CAS  PubMed  Google Scholar 

  32. Falkowski A, Poncyljusz W, Wilk G, et al. The evaluation of primary stenting of sirolimus-eluting versus bare-metal stents in the treatment of atherosclerotic lesions of crural arteries. Eur Radiol. 2009;19:966–74.

    Article  PubMed  Google Scholar 

  33. Siablis D, Kitrou PM, Spiliopoulos S, et al. Paclitaxel-coated balloon angioplasty versus drug-eluting stenting for the treatment of infrapopliteal long-segment arterial occlusive disease: the IDEAS randomized controlled trial. J Am Coll Cardiol Intv. 2014;7:1048–56.

    Article  Google Scholar 

  34. Fusaro M, Cassese S, Ndrepepa G, et al. Drug eluting stents for revascularization of infrapopliteal arteries. J Am Coll Cardiol Intv. 2013;6:1284–93.

    Article  Google Scholar 

  35. Karnabatidis D, Katsanos K, Spiliopoulos S, et al. Incidence, anatomical location, and clinical significance of compressions and fractures in infrapopliteal balloon-expandable metal stents. J Endovasc Ther. 2009;16:15–22.

    Article  PubMed  Google Scholar 

  36. Schmidt A, Piorkowski M, Werner M, et al. First experience with drug-eluting balloons in infrapopliteal arteries. J Am Coll Cardiol. 2011;58:1105–9.

    Article  CAS  PubMed  Google Scholar 

  37. Liistro F, Porto I, Angioli P, et al. Drug-Eluting Balloon in Peripheral Intervention for Below the Knee Angioplasty Evaluation (DEBATE-BTK): a randomized trial in diabetic patients with critical limb ischemia. Circulation. 2013;128:615–21.

    Article  CAS  PubMed  Google Scholar 

  38. Zeller T, Baumgartner I, Scheinert D, IN.PACT DEEP Trial Investigators, et al. Drug-eluting balloon versus standard balloon angioplasty for infrapopliteal revascularization in critical limb ischemia: 12-month results from the IN.PACT DEEP randomized trial. J Am Coll Cardiol. 2014;64:1568–76. This large, randomized trial of drug-coated balloon angioplasty in patients with critical limb ischemia questions the utility of this therapeutic modality for treatment of infrapopliteal peripheral artery disease.

    Article  PubMed  Google Scholar 

  39. Rocha Singh KJ, Jaff M, Joye J, et al. Major adverse limb events and wound healing following infrapopliteal artery stent implantation in patients with critical limb ischemia: the XCELL trial. Catheter Cardiovasc Interv. 2012;80:1042–51.

    Article  PubMed  Google Scholar 

  40. Schulte KL, Pilger E, Schellong S, et al. Primary self-expanding nitinol stenting vs. balloon angioplasty with optional bailout stenting for the treatment of infrapopliteal artery disease in patients with severe intermittent claudication or critical limb ischemia. J Endovasc Ther. 2015;22:690–7.

    Article  PubMed  Google Scholar 

  41. Bosiers M, Peeters P, D’Archambeau O, et al. AMS INSIGHT—absorbable metal stent implantation for treatment of below-the-knee critical limb ischemia: 6-month analysis. Cardiovasc Intervent Radiol. 2009;32:424–35.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Owens CD, Gasper WJ, Walker JP, et al. Safety and feasibility of adjunctive dexamethasone infusion into the adventitia of the femoropopliteal artery following endovascular intervention. J Vasc Surg. 2014;59:1016–24.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehrin J. Armstrong.

Ethics declarations

Conflict of Interest

Ehrin J. Armstrong is a consultant/advisory board member to Abbott Vascular, Medtronic, Merck, Pfizer, and Spectranetics.

Kalkidan Bishu and Stephen W. Waldo report no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Interventional Cardiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Armstrong, E.J., Bishu, K. & Waldo, S.W. Endovascular Treatment of Infrapopliteal Peripheral Artery Disease. Curr Cardiol Rep 18, 34 (2016). https://doi.org/10.1007/s11886-016-0708-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-016-0708-y

Keywords

Navigation