Skip to main content
Log in

Effect of La(NO3)3 and Ce(NO3)3 on shoot induction and seedling growth of in vitro cultured anoectochilus roxburghii

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Anoectochilus roxburghii, a highly valuable medicinal plant species, is threatened in its native habitat. To ensure the sustainability of this useful resource, we studied the effect of La(NO3)3 and Ce(NO3)3 on plant tissue culturepropagated A. roxburghii. Apical buds, mid-stem segments, and basal rhizome segments were taken from aseptic seedlings of A. roxburghii and cultured in vitro on half-strength Murashige-Skoog medium containing different concentrations (up to 5.0 mg/L) of La(NO3)3 or Ce(NO3)3. After 100 d of culturing, average heights of plantlets derived from apical buds were 6.0 cm with 5.0 mg/L La(NO3)3 and 6.2 cm with 2.0 mg/L Ce(NO3)3, which respectively increased by 28.0% and 32.0% as compared with that in the non-treated control group. The optimum concentration for shoot induction from mid-stem segments was 1.0 mg/L Ce(NO3)3 which had a better proliferation times of 1.5-fold and an average length of 3.0 cm compared with 1.0-fold and 2.2 cm in the control group. Optimum growth from basal rhizome segments was achieved on media supplemented with 3.0 mg/L Ce(NO3)3, which provided a better proliferation times of 5.1-fold and an average shoot length of 4.5 cm compared with corresponding control values of 2.0-fold and 3.5 cm. Our results showed that La(NO3)3 and Ce(NO3)3 can accelerate A. roxburghii regeneration, which was probably due to the effect on chlorophyll contents, enzymes activity (superoxide dismutase, catalase and peroxidase) and malonldialedhyde contents caused by the addition of La(NO3)3 or Ce(NO3)3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  • Bowler C, Camp WV, Montagy MV, Inze D (1994) Superoxide dismutase in plants. Crit Rev Plant Sci 13(3):199–218

    Article  CAS  Google Scholar 

  • Brown PH, Rathjen AH, Graham RD, Tribe DE (1990) In: Gschneidner KA Jr, Eyring L (eds) Handbook on the physics and chemistry of rare earths, vol. 13. Elsevier, Amsterdam, pp 423–453

    Google Scholar 

  • Burda K, Strzalka K, Schmid, GH (1995) Europium- and dysprosiumions as probes for the study of calcium binding sites in photosystem II. Zeitschrift für Naturforschung 50:220–230

    CAS  Google Scholar 

  • Chen SA, Zhao B, Wang XD, Yuan XF, Wang YH (2003) Promotion of the growth of Crocus sativus cells and the production of crocin by rare earth elements. Biotechnol Lett 26:27–30

    Article  Google Scholar 

  • Chen XQ, Stephan WG, Phillip JC, Paul O (2009) Flora of China Editorial Committee, Flora of China, vol. 25 (Orchidaceae). Missouri Botanical Garden Press and Science Press, St. Louis and Beijing, pp 76–80

    CAS  Google Scholar 

  • Diatloff E, Smith FW, Asher CJ (2008) Effects of lanthanum and cerium on the growth and mineral nutrition of corn and mungbean. Ann Bot 101:971–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du XM, Irino N, Furusho N, Hayashi J, Shoyama Y (2008) Pharmacologically active compounds in the Anoectochilus and Goodyera species. J Nat Med 62:132–148

    Article  CAS  PubMed  Google Scholar 

  • d’Aquino L, Morgana M, Carboni MA, Staiano M, Antisari MV, Re M, Lorito M, Vinale F, Abadi KM, Woo SL (2009) Effect of some rare earth elements on the growth and lanthanide accumulation in different Trichoderma strains. Soil Biol Biochem 41:2406–2413

    Article  Google Scholar 

  • Feng G, Wang XD, Zhao B, Wang YC (2006) Effects of rare earth elements on the growth of Arnebia euchroma cells and the biosynthesis of shikonin. Plant Growth Regul 48:283–290

    Article  Google Scholar 

  • Feng WX, Zhang YE, Wang YG, Li FX (1999) The alleviative effects of LaCl3 on the osmotic stress in maize seedlings. Henan Sci 17:45–46

    Google Scholar 

  • Guo B, Xu LL, Guan ZJ, Wei YH (2012) Effect of lanthanum on rooting of in vitro regenerated shoots of Saussurea involucrata Kar. et Kir. Biol Trace Elem Res 147:334–340

    Article  CAS  PubMed  Google Scholar 

  • Hong FS, Fang N, Gu YH, Zhao GW (1999) Effect of cerium nitrate on seed vigor and activities of enzymes during germination of rice. Chinese Rare Earths 20:45–47

    Google Scholar 

  • Hong FS, Wang L, Meng XX, Wei Z, Zhao GW (2002a) The effect of cerium (III) on the chlorophyll formation in spinach. Biol Trace Elem Res 89:263–275

    Article  CAS  Google Scholar 

  • Hong FS, Wei ZG, Zhao GW (2000) Effect of lanthanumon aged seed germination of rice. Biol Trace Elem Res 75:205–213

    Article  CAS  Google Scholar 

  • Hong FS, Wei ZG, Zhao GW (2002b) Mechanism of lanthanum effect on the chlorophyll of spinach. Sci China Ser C 45:166–176

    Article  CAS  Google Scholar 

  • Hu Z, Richter H, Sparovek G, Schnug E (2004) Physiological and biochemical effects of rare earth elements on plants and their agricultural significance: a review. J Plant Nutr 27:183–220

    Article  CAS  Google Scholar 

  • Huang G, Wang L, Zhou Q (2012) Lanthanum (III) regulates the nitrogen assimilation in soybean seedlings under ultraviolet-Bradiation. Biol Trace Elem Res 151:105–112

    Article  PubMed  Google Scholar 

  • Ippolito MP, Fasciano C, d’Aquino L, Morgana M, Tommasi F (2010) Responses of antioxidant systems after exposition to rare earths and their role in chilling stress in common duckweed (Lemna minor L.): a defensive weapon or a boomerang? Arch Environ Contam Toxicol 58:42–52

    Article  CAS  PubMed  Google Scholar 

  • Ippolito MP, Paciolla C, d’Aquino L, Morgana M, Tommasi F (2007) Effect of rare earth elements on growth and antioxidant metabolism in Lemna minor L. Caryologia 60:125–128

    Article  Google Scholar 

  • Jing F, Bei W, Shan XQ, Wang H, Lin J, Zhang S (2007) Evaluation of bioavailability of light rare earth elements to wheat (Triticum aestivum L.) under field conditions. Geoderma 141:53–59

    Article  Google Scholar 

  • Liao TJ, Huang Y, Su BY, Zou ZJ (1994) Study of rare earths on yields, qualities and physiological effect of spinach, Rare Earths 15(5): 26–29

    Google Scholar 

  • Lin CC, Huang PC, Lin JM (2000) Antioxidant and hepatoprotective effects of Anoectochilus formosanus and Gynostemma pentaphyllum. Amer J Clin Med 28:87–96

    Article  CAS  Google Scholar 

  • Lin JM, Lin CC, Chiu HF, Yang JJ, Lee SG (1993) Evaluation of the anti- inflammatory and liver protective effects of Anoectochilus formosanus, Ganderma lucidum and Gynostemma pentaphyllum. Amer J Clin Med 11:59–69

    Article  Google Scholar 

  • Luo AX, Meng ZX, Chen XM, Guo SX (2012) Seed germination and young seedling propagation of Anoectochilus roxburghii. Chin Pharm J 47:1199–1203

    CAS  Google Scholar 

  • Ni JZ (1995) Rare Earth Bioinorganic Chemistry, Science Press, Beijing pp 13–37

    Google Scholar 

  • Olivares E, Aguiar G, Colonnello G (2011) Rare earth elements in vascular plants: a review. Interciencia 36:331–340

    Google Scholar 

  • Peng X, Zhou SL, He JY, Ding Li (2013) Influence of rare earth elements on metabolism and related enzyme activity and isozyme expression in Tetrastigma hemsleyanum cell suspension cultures. Biol Trace Elem Res 152:82–90

    Article  CAS  Google Scholar 

  • Song WP, Hong FS, Wan ZG, Zhou YZ, Gu FG, Xu HG, Yu ML, Chang YH, Zhao MZ, Su JL (2003) Effects of cerium on nitrogen metabolism of peach plantlet in vitro. Biol Trace Elem Res 95:259–268

    Article  CAS  Google Scholar 

  • Tseng CC, Shang HF, Wang LF, Su B, Hsu CC, Kao HY, Cheng KT (2006) Antitumor and immunostimulating effects of Anoectochilus formosanus Hayata. Phytomedicine 13:366–370

    Article  PubMed  Google Scholar 

  • Tyler G (2004) Rare earth elements in soil and plant systems—a review. Plant Soil 267:191–206

    Article  CAS  Google Scholar 

  • Wang BS (1988) Biological free radicals and membrane damage of plants. Plant Physiol Commun 2:12–16

    Google Scholar 

  • Wang L, Huang X, Zhou Q (2009) Protective effect of rare earth against oxidative stress under ultraviolet-B radiation. Biol Trace Elem Res 128:82–93

    Article  CAS  PubMed  Google Scholar 

  • Wang SY, Kuo YH, Chang HN, Kang PL, Tsay HS, Lin KF, Yang NS, Shyur LF (2002) Profiling and characterization of antioxidant activities in Anoectochilus formosanus Hayata. J Agric Food Chem 50:1859–1865

    Article  CAS  PubMed  Google Scholar 

  • Wang YL, Wang XD, Zhao B, Wang YC (2007) Reduction of hyperhydricity in the culture of Lepidium meyenii shoots by the addition of rare earth elements. Plant Growth Regul 52:151–159

    Article  CAS  Google Scholar 

  • Wu JY, Wang CG, Mei XG (2001) Stimulation of taxol production and excretion in Taxus spp cell cultures by rare earth chemical lanthanum. J Biotechnol 85:67–73

    Article  CAS  PubMed  Google Scholar 

  • Yang HL, Hu JF, Xu XZ, He JM, Song S (2013) Study on tissue culture and rapid propagation of Anoectochilus roxburghii. Southwest China Journal of Agriculture Science 26:2485–2488

    Google Scholar 

  • Yuan X, Zhao B, Wang Y (2005) Application of rare earth elements in medicinal plant cell and tissue culture. Chinese Bull Bot 22:115–120

    Google Scholar 

  • Yuan XF, Wang Q, Zhao B, Wang YC (2002) Improved cell growth and total flavonoids of Saussurea medusa on solid culture medium supplemented with rare earth elements. Biotechnol Lett 24:1889–1892

    Article  CAS  Google Scholar 

  • Zeng F, Tian HE, Wang Z, Yi A, Gao F, Zhang L, Li F, Shan L (2003) Effect of rare earth element europium on amaranthin synthesis in Amarathus caudatus seedlings. Biol Trace Elem Res 93:271–282

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guifang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Zhang, G., Wang, Y. et al. Effect of La(NO3)3 and Ce(NO3)3 on shoot induction and seedling growth of in vitro cultured anoectochilus roxburghii . J. Plant Biol. 59, 105–113 (2016). https://doi.org/10.1007/s12374-016-0437-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-016-0437-1

Keywords

Navigation