Skip to main content
Log in

Pharmacologically active compounds in the Anoectochilus and Goodyera species

  • Review
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

The extract of Anoectochilus formosanus showed significant activity in decreasing the levels of the cytosolic enzymes LDH, GOT, and GPT, and the result demonstrated that A. formosanus possessed prominent hepatoprotective activity against CCl4-induced hepatotoxicity. Moreover, in the results of the test using aurothioglucose-induced obese mice, the extract showed a significant antihyperliposis effect. A. formosanus grown in the wild and propagated by tissue culture contain ten compounds, including a major known component, (3R)-3-(β-d-glucopyranosyloxy)butanolide (kinsenoside; 1), and two new components, (3R)-3-(β-d-glucopyranosyloxy)-4-hydroxybutanoic acid (2) and 2-[(β-d-glucopyranosyloxy)methyl]-5-hydroxymethylfuran (3), along with the known compounds, isopropyl-β-d-glucopyranoside (4), (R)-3,4-dihydroxybutanoic acid γ-lactone (5), 4-(β-d-glucopyranosyloxy) benzyl alcohol (6), (6R,9S)-9-(β-d-glucopyranosyloxy)megastigma-4,7-dien-3-one (7), and (3R)-3-(β-d-glucopyranosyloxy)-4-hydroxybutanolide (8). Since a higher concentration of kinsenoside (1) was detected in the crude drugs A. formosanus and A. koshunensis by high-performance liquid chromatography (HPLC) analysis, we proved a simple purification system for kinsenoside (1), giving 180 mg of kinsenoside (1) from 1 g of dried samples for further pharmacological experiments. In an anti-hyperliposis assay using high-fat-diet rats, 1 significantly reduced the weights of the body and the liver, and also decreased the triglyceride level in the liver compared to those of control rats. On the other hand, the epimer of 1, (3S)-3-(β-d-glucopyranosyloxy)butanolide, goodyeroside A (9), which was isolated from the Goodyera species, had no effect for anti-hyperliposis. In aurothioglucose-induced obese mice, 1 suppressed the body and liver weight increase, significantly ameliorated the triglyceride level in the liver, and also reduced the deposition of uterine fat pads. The anti-hepatoxic activities of 9 and goodyerosides B (10) were studied on injury induced by CCl4 in primary cultured rat hepatocytes by measuring the levels of LDH, GOT, and GPT. In the CCl4-treated control group, there were marked increases in LDH, GOT, and GPT activities compared with the normal group. In contrast, these levels were suppressed in 9- and 10-treated groups. Goodyerin (11), a new typical flavone glycoside, exhibited a significant and dose-dependent sedative and anticonvulsant effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Asahishinbun (1997) Asahi encyclopedia the world of plants, vol 9. Asahishinbun Press, Tokyo pp 243–244

  2. Jiangsu New Medical College (1977) Dictionary of the traditional Chinese medicines. Shanghai Science and Technology Press, Shanghai, pp 1334–1335

    Google Scholar 

  3. Liang WL, Chen RC, Chiang YJ, Su CH, Yang LL, Yen KY (1990) Study on Anoectochilus species. Formosan Sci 43:47–58

    Google Scholar 

  4. Kan W-S (1986) Pharmaceutical botany. National Research Institute of Chinese Medicine, Taipei, Taiwan, p 647

    Google Scholar 

  5. Zheng C, Huang Y-Z, Ji L-F (1996) Pharmacognostical studies on Jin Xian Lian. Zhongcaoyao 27:169–172

    Google Scholar 

  6. Lin CC, Namba T (1981) Pharmacognostical studies on the crude drugs of Orchidaceae from Taiwan (VI). Shoyakugaku Zasshi 35:262–271

    Google Scholar 

  7. Lin CC, Namba T (1981) Pharmacognostical studies on the crude drugs of Orchidaceae from Taiwan (VII). Shoyakugaku Zasshi 35:272–286

    Google Scholar 

  8. Du X-M, Yoshizawa T, Shoyama Y (1998) Butanoic acid glucoside composition of whole body and in vitro plants of Anoectochilus formosanus. Phytochemistry 49:1925–1928

    Article  CAS  Google Scholar 

  9. Du X-M, Sun N-Y, Shoyama Y (2000) Flavonoids from Googyer schlechtendaliana. Phytochemistry 53:997–1000

    Article  PubMed  CAS  Google Scholar 

  10. Du X-M, Sun N-Y, Chen Y, Irino N, Shoyama Y (2000) Hepatoprotective aliphatic glycosides from three Googyera species. Biol Pharm Bull 23:731–734

    PubMed  CAS  Google Scholar 

  11. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  12. Niiho Y, Yamazaki T, Hosono T, Nakajima Y, Ishizaki M, Kurashige T (1993) Pharmacological studies on small peptide fraction from soybean. The effects of small peptide fraction derived from soybean on fatigue, obesity and glycemia in mice. Yakugaku Zasshi 113:334–342

    PubMed  CAS  Google Scholar 

  13. Raucy JL, Kraner JC, Lasker J (1993) Bioactivation of halogenated hydrocarbons by cytochrome P4502E1. Crit Rev Toxicol 23:1–20

    Article  PubMed  CAS  Google Scholar 

  14. Faroon O, De Rosa CT, Smith L (1994) Carbon tetrachloride-health effects, toxicokinetics, human exposure and environmental fate. Toxic Ind Health 10:4–20

    Google Scholar 

  15. Clawson GA (1989) Mechanisms of carbon tetrachloride hepatotoxity. Pathol Immunopathol Res 8:104–112

    Article  PubMed  CAS  Google Scholar 

  16. Brecher G, Waxler SH (1949) Obesity in albino mice due to single injections of goldthioglucose. Proc Soc Exp Biol Med 70:499–501

    Google Scholar 

  17. Brecher G, Laquer GL, Cronkite EP, Edelman PM, Schwartz IL (1965) The brain lesion of goldthioglucose obesity. J Exp Med 121:395–401

    Article  PubMed  CAS  Google Scholar 

  18. Rizack MA (1961) An adrenaline-sensitive lipolytic activity in adipose tissue. J Biol Chem 236:657–662

    CAS  Google Scholar 

  19. Liu S-Y, Chang T-W, Wang J-Y, Chang A-H, Wang S-C (1998) Study on the varietal characters and acute toxicity of Anoectochilus spp. J Agric Res China 47:242–258

    CAS  Google Scholar 

  20. Kannel WB, Castelli W, Gordon T (1971) Serum cholesterol, lipoproteins, and the risk of coronary heart disease. Ann Int Med 74:1–12

    PubMed  CAS  Google Scholar 

  21. Goldbourt V, Holtzman E, Neufeld NN (1985) Total and high density lipoprotein cholesterol in the serum and risk of mortality: evidence of threshold effect. Br Med J 290:1239–1243

    CAS  Google Scholar 

  22. Nomura H, Kashiwagi S, Hayashi J, Kajiyama W, Tani S, Goto M (1988) Prevalence of fatty liver in a general population of Okinawa. Jpn J Med 27:142–149

    PubMed  CAS  Google Scholar 

  23. Liu SY, Tsay HS, Huang HC, Hu MF, Yeh CC (1987) Comparison on growth characteristics and nutrient composition between plants of Anoectochilus species from mass vegetative propagation by tissue culture techniques. J Agr Res China 36:357–341

    Google Scholar 

  24. Du X-M, Sun N-Y, Yoshizawa T (1997) A higher yielding isolation method for kinsenoside. Japan Kokai Tokkyo Koho 11–92492

  25. Ito A, Yasumoto K, Kasai R, Yamasaki K (1994) A sterol with an unusual side chain from Anoectochilus koshunesis. Phytochemistry 36:1465–1467

    Article  PubMed  CAS  Google Scholar 

  26. Taguchi H, Yoshioka I, Yamasaki K, Kim L (1981) Studies on the constituents of Gastrodia elata. Chem Pharm Bull 29:55–62

    CAS  Google Scholar 

  27. Pabst A, Barron D, Sémon E, Schreier P (1992) Two diastereomeric 3-oxo-α-ionol β-glucosides from raspberry fruit. Phytochemistry 31:1649–1652

    Article  CAS  Google Scholar 

  28. Yoshikawa M, Shimada H, Saka M, Yoshizumi S (1997) Absolute stereostructures of corchoionosides A, B and C, histamine release inhibitors from the leaves of Viethamese Corchorus olitorius. Chem Pharm Bull 45:464–469

    PubMed  CAS  Google Scholar 

  29. Du X-M, Kohinata K, Kawasaki T, Guo Y-T, Miyahara K (1998) Components of the ether-insoluble resin glycoside-like fraction from Cuscuta chinensis. Phytochemistry 48:843–850

    Article  PubMed  CAS  Google Scholar 

  30. Cao W, Li Y, Zhu D (1999) Phenolic glucosides and a gamma-lactone glucoside from the sprouts of Crocus sativus. Planta Med 65:425–427

    Article  Google Scholar 

  31. Hara S, Okabe H, Mihashi K (1987) Gas-liquid chromatographic separation of aldose enantiomers as trimethylsilyl ethers of methyl 2-(polyhydroxyalkyl)-thiazolidine-4-(R)-carboxylates. Chem Pharm Bull 35:501–505

    CAS  Google Scholar 

  32. Brecher G, Waxler SH (1949) Obesity in albino mice duo to single injections of goldthioglucose. Proc Soc Exp Biol Med 70:498–501

    PubMed  CAS  Google Scholar 

  33. Brobeck JR (1946) Mechanism of the development of obesity in animals with hypothalamic lesions. Physiol Rev 26:541–559

    CAS  Google Scholar 

  34. Han PW, Liu AC (1966) Obesity and impaired growth of rats. Am J Physiol 211:229–231

    PubMed  CAS  Google Scholar 

  35. Meldrum BS, Chapman AG (1986) Benzodiazepine receptors and their relationship to the treatment of epilepsy. Epilepsia 27(Suppl)S3–S13

    Article  PubMed  CAS  Google Scholar 

  36. Macdonald RL (1988) Anticonvulsant drug actions on neurons in cell culture. J Neural Trans 72:173–183

    Article  CAS  Google Scholar 

  37. Delgado-Escueta AV, Ward AA, Woodbury DM, Porter R (1986) New wave of research in the epilepsies in advances in neurology. Adv Neurol 4:3–55

    Google Scholar 

  38. Harborne JB (1994) The flavonoids, advances in research since 1986. Chapman, London

    Google Scholar 

  39. Middleton E, Kandaswami C (1994) The impact of plant flavonoids on mammalian biology: implications for immunity, inflammation and cancer. In: Harbome JB (ed) The flavonoids, advances in research since 1986. Chapman, London, pp 619–645

    Google Scholar 

  40. Medina JH, Paladini AC, Wolfman C, Levi de Stein M, Calvo D, Diaz L (1990) Chrysin (5,7-di-OH-flavone), a naturally-occurring ligand for benzodiazepine receptors with anticonvulsant properties. Biochem Pharmacol 40:2227–2232

    Article  PubMed  CAS  Google Scholar 

  41. Paladini AC, Marder M, Viola H, Wolfman C, Wasowski C, Medina JH (1999) Flavonoids and the central nervous system: from forgotten factors to potent anxiolytic compounds. J Pharm Pharmacol 51:519–526

    Article  PubMed  CAS  Google Scholar 

  42. Viola H, Wasowaki C, Levi M, Wolfman C, Silveira R, Dajas F, Medina JH, Paladini AC (1995) Apigenin, a component of Matricaria recutita flowers, is a central benzodiazepine receptors-ligand with anxiolytic effects. Planta Med 61:213–216

    PubMed  CAS  Google Scholar 

  43. Wolfman C, Viola H, Paladini AC, Dajas F, Medina JH (1994) Possible anxiolytic effects of chrysin, a central benzodiazepine receptor ligand isolated from Passiflora coerulea. Pharmacol Biochem Behav 47:1–4

    Article  PubMed  CAS  Google Scholar 

  44. Shoyama T, Nishioka I, Hatano K (1991) In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 15. Springer, Berlin, pp 58–72

    Google Scholar 

Download references

Acknowledgments

The authors give thanks to the financial support from the Special Coordination Funds for Promoting Science and Technology of the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukihiro Shoyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, XM., Irino, N., Furusho, N. et al. Pharmacologically active compounds in the Anoectochilus and Goodyera species. J Nat Med 62, 132–148 (2008). https://doi.org/10.1007/s11418-007-0169-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-007-0169-0

Keywords

Navigation