Skip to main content
Log in

The Anthropic Principle for the Evolutionary Biology of Consciousness: Beyond Anthropocentrism and Anthropomorphism

  • Original Research
  • Published:
Biosemiotics Aims and scope Submit manuscript
  • 13 Altmetric

Abstract

The evolutionary origin(s) of consciousness has been a growing area of study in recent years. Nevertheless, there is intense debate on whether the existence of phenomenal consciousness without the cerebral cortex is possible. The corticocentrists have an empirical advantage because we are quasi-confident that we humans are conscious and have the well-developed cortex as the site of our consciousness. However, their prejudice can be an anthropic bias similar to the anthropocentric prejudice in pre-Darwinian natural history. In this paper, I propose three basic principles to provide a conceptual basis for evolutionary studies of consciousness: the non-solipsistic principle, the evolution principle, and the anthropic principle. These principles collectively help us to avoid solipsism, anthropocentrism, and anthropomorphism to some degree, although we cannot be completely free from them. Also, the landscape metaphor associated with the anthropic principle provides an image of how different forms of consciousness can be acquired.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Some authors argue that unicellular entities have some sort of primordial conscious experience, so consciousness may not require the brain (Edwards 2006, Fitch 2008, Reber 2019). The evolutionary principle is also required from that perspective, to address the question how consciousness has emerged and developed during the evolution of living entities. Nevertheless, it is notable that Godfrey-Smith (2020, p. 278) rejects such biopsychism. He distinguishes cognition and sentience, granting only minimal cognition in bacteria. To address these problems, it would be helpful to analyze cognition and consciousness by characterizing these concepts in terms of semiosis.

  2. Even if corticocentrism is accepted, it is possible that all vertebrates are conscious: the lamprey, which belongs to the basalmost lineage of vertebrates (i.e., cyclostomes), has been shown to have the layered lateral pallium (the counterpart of the cortex) containing subregionalized sensory representation and integrative microcircuits (Ocaña et al. 2015; Suryanarayana et al. 2017, 2020).

  3. For me, emergentism thus seems more reasonable because it needs to answer only this type of problem and does not require either new fundamental features or any drastic reconstruction of contemporary scientific theories.

  4. Here the term “analogy” is not used in the evolutionary sense (i.e., the sameness in function), but in general sense (i.e., similarity).

  5. This also implies that we need a framework of homology that does not depend on basal mechanisms (see Suzuki and Tanaka 2017).

  6. My point here is that it would be erroneous to attribute consciousness to the homology of a single or a few neural substrate(s). As an evolutionary entity, consciousness could be heterogeneous and decomposable into different subsystems, specific components of which are important in different biological contexts. Furthermore, in the case of convergently evolved consciousness (of mammals and octopuses, for example), some homologous components might be shared (deep homology). From this point of view, homology thinking itself (Ereshefsky 2012; Suzuki 2021; Wagner 2016) is useful to understand the evolution and biodiversity of consciousness (Ota et al. in press), or more generally, of psychological phenomena. For example, see Balari and Lorenzo (2015a) for an analysis of pain and Balari and Lorenzo (2013, 2015b) for a discussion of evolution of language.

  7. Of course, one can also speculate that there is only a single peak (for the human/mammalian/cortical consciousness). There is no a priori justification for both speculations. Then what we can do is to prepare a framework compatible with both of them.

  8. This does not necessarily mean that arthropods and cephalopods in fact have the capacity of representing oneself as having evolved consciousness, which requires higher cognitive ability—metaconsciousness. The point here is just that these animals have their own subjective world. To paraphrase the anthropic consciousness in the evolution of consciousness, “arthropodic/cephalopodic” principle is that consciousness of arthropods/cephalopods (and hence the biological characters in their evolutionary lineage on which it depends) must be such as to admit the creation of observers (i.e., conscious arthropods/cephalopods) within it at some stage. In this context, Uexküll’s umwelt theory seems to be useful to understand invertebrate consciousness, although the notion of umwelt covers more than just consciousness (i.e., organisms without consciousness also have their own umwelts). See also the following discussion in the text.

References

  • Andrews, K. (2014). The Animal Mind: An Introduction to the Philosophy of Animal Cognition. London: Routledge

    Book  Google Scholar 

  • Allen, C., & Trestman, M. (2017). Animal consciousness. In: Zalta EN (ed.) The Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/archives/win2017/entries/consciousness-animal/

  • Balari, S., & Lorenzo, G. (2013). Computational Phenotypes. Towards an Evolutionary Developmental Biolinguistics. Oxford University Press

  • Balari, S., & Lorenzo, G. (2015a). Ahistorical homology and multiple realizability. Phil Psychol, 28, 881–902

    Article  Google Scholar 

  • Balari, S., & Lorenzo, G. (2015b). It is an organ, it is new, but it is not a new organ. Conceptualizing language from a homological perspective. Frontiers Eco Evo, 3, 58

    Google Scholar 

  • Barbieri, M. (2011). Origin and evolution of the brain. Biosemiotics, 4, 369–399

    Article  Google Scholar 

  • Barron, A., & Klein, C. (2016). What insects can tell us about the origins of consciousness. PNAS, 113(18), 4900–4908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barton, N. H., Briggs, D. E. G., Eisen, J. A., Goldstein, D. B., & Patel, N. H. (2017). Evolution. Cold Spring Harbor: Cold Spring Harbor Laboratory Press

    Google Scholar 

  • Bermudez, J. L. (2007). Thinking Without Words. Oxford: Oxford University Press

    Google Scholar 

  • Bronfman, Z. Z., Ginsburg, S., & Jablonka, E. (2016). The transition to minimal consciousness through the evolution of associative learning. Front Psychol, 7, 1954

    Article  PubMed  PubMed Central  Google Scholar 

  • Brüntrup, G., & Jaskolla, L. (Eds.). (2016). Panpsychism: Contemporary Perspectives. Oxford: Oxford University Press

    Google Scholar 

  • Carter, B. (1974). Large number coincidences and the anthropic principle in cosmology. IAU Symposium 63: Confrontation of Cosmological Theories with Observational Data. Dordrecht: Reidel. pp. 291–298

  • Chalmers, D. (1996). The Conscious Mind. Oxford: Oxford University Press

    Google Scholar 

  • Chalmers, D. (2010). The Character of Consciousness. Oxford: Oxford University Press

    Book  Google Scholar 

  • Chalmers, D. (2016). The Combination Problem for Panpsychism. In G. Brüntrup, & L. Jaskolla (Eds.), Panpsychism: Contemporary Perspectives (pp. 179–214). Oxford: Oxford University Press

    Chapter  Google Scholar 

  • Chapman, C. A., & Huffman, M. A. (2018). Why do we want to think humans are different? Anim Sentience, 23, 1

    Google Scholar 

  • Darwin, C. (1859). On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. London: J Murray

    Book  Google Scholar 

  • Deacon, T. W. (1997). The Symbolic Species: The Co-evolution of Language and the Brain. New York: W.W. Norton

    Google Scholar 

  • Dayrat, B. (2003). The roots of phylogeny: How did Haeckel build his trees? Syst Biol, 52(4), 515–527

    Article  PubMed  Google Scholar 

  • Edelman, D. (2007). Consciousness without corticocentrism: Beating an evolutionary path. Behav Brain Sci, 30, 91–92

    Article  Google Scholar 

  • Edwards, J. C. W. (2006). How Many People Are There in My Head? And in Hers? Inprint Academic. Hardcastle VG (1999) The Myth of Pain. MIT Press

  • Ereshefsky, M. (2012) Homology thinking. Biol Philos, 27, 381–400

  • Feinberg, T. E., & Mallatt, J. (2013). The evolutionary and genetic origins of consciousness in the Cambrian period over 500 million years ago. Front Psychol, 4, 667

    Article  PubMed  PubMed Central  Google Scholar 

  • Feinberg, T. E., & Mallatt, J. M. (2016a). The Ancient Origins of Consciousness: How the Brain Created Experience. Cambridge: MIT Press

    Book  Google Scholar 

  • Feinberg, T. E., & Mallatt, J. M. (2016b). The nature of primary consciousness: a new synthesis. Consciousness Cogn, 43, 113–127

    Article  Google Scholar 

  • Feinberg, T. E., & Mallatt, J. M. (2018). Consciousness Demystified. Cambridge: MIT Press

    Book  Google Scholar 

  • Fitch, W. T. (2008). Nano-intentionality: a defense of intrinsic intentionality. Biol Philos, 23, 157–177

    Article  Google Scholar 

  • Gautam, A., & Kak, S. (2013). Symbols, meaning, and origins of mind. Biosemiotics, 6, 301–310

    Article  Google Scholar 

  • Ginsburg, S., & Jablonka, E. (2019). The Evolution of the Sensitive Soul. Cambridge: MIT Press

    Book  Google Scholar 

  • Giurfa, M., Núñez, J., Chittka, L., & Menzel, R. (1995). Colour preferences of flower-naive honeybees. J Comp Physiol A, 177, 247–259

    Article  Google Scholar 

  • Godfrey-Smith, P. (2017). Other Minds: The Octopus and the Evolution of Intelligent Life. New York: HarperCollins

    Google Scholar 

  • Godfrey-Smith, P. (2020). Metazoa: Animal Minds and the Birth of Consciousness. London: William Collins

  • Haag, E. S., & True, J. R. (2018). Developmental system drift. In de la L. Nuno, & G. Müller (Eds.), Evolutionary developmental biology. Cham: Springer

    Google Scholar 

  • Humphrey, N. (2011). Soul Dust: The Magic of Consciousness. Princeton: Princeton University Press

    Book  Google Scholar 

  • Hoffmeyer, J. (2008). Biosemiotics: An Examination into the Signs of Life and the Life of Signs. Scranton, PA: University of Scranton Press

    Google Scholar 

  • Hoffmeyer, J., & Stjernfelt, F. (2016). The great chain of semiosis: Investigating the steps in the evolution of semiotic competence. Biosemiotics, 9, 7–29

    Article  Google Scholar 

  • Hyslop, A. (2005/2014). Other Minds. The Stanford Encyclopedia of Philosophy. http://plato.stanford.edu/entries/other-minds/

  • Kardamakis, A. A., Pérez-Fernández, J., & Grillner, S. (2016). Spatiotemporal interplay between multisensory excitation and recruited inhibition in the lamprey optic tectum. eLife, 5, e16472

    Article  PubMed  PubMed Central  Google Scholar 

  • Kardamakis, A. A., Pérez-Fernández, J., & Grillner, S. (2018). Circuitry of the lamprey optic tectum. In: Shepherd G, Grillner S (eds.) Handbook for Brain Microcircuits, Second Edition. New York: Oxford University Press. pp. 467–474

  • Kardamakis, A. A., Saitoh, K., & Grillner, S. (2015). Tectal microcircuit generating visual selection commands on gaze-controlling neurons. PNAS, 112(15), E1956–E1965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Key, B. (2015). Fish do not feel pain and its implications for understanding phenomenal consciousness. Biol Philos, 30(2), 149–165

    Article  PubMed  Google Scholar 

  • Key, B. (2016). Why fish do not feel pain. Anim Sentience, 3, 1

    Google Scholar 

  • Key, B., & Brown, D. (2018). Designing brains for pain: human to mollusc. Front Physiol, 9, 1027

    Article  PubMed  PubMed Central  Google Scholar 

  • Key, B., Arlinghaus, R., & Browman, H. I. (2016). Insects cannot tell us anything about subjective experience or the origin of consciousness. PNAS, 113(27), E3813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein, C., & Barron, A. B. (2016). Insects have the capacity for subjective experience. Anim Sentience, 9, 1

    Google Scholar 

  • Kutschera, U. (2011). From the scala naturae to the symbiogenetic and dynamic tree of life. Biology Direct 2011, 6, 33

  • Linde, A. (2004). Inflation, quantum cosmology and the anthropic principle. In J. D. Barrow, P. C. W. Davies, & C. L. Harper (Eds.), Science and Ultimate Reality: From Quantum to Cosmos (pp. 426–458). Cambridge: Cambridge University Press

    Google Scholar 

  • Mallatt, J., & Feinberg, T. E. (2016). Insect consciousness: Fine-tuning the hypothesis. Anim Sentience, 9, 10

    Google Scholar 

  • Masullo, L., Mariotti, L., Alexandre, N., Freire-Pritchett, P., Boulanger, J., & Tripodi, M. (2019). Genetically defined functional modules for spatial orienting in the mouse superior colliculus. Curr Biol, 29(17), 2892–2904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mather, J. A. (2008). Cephalopod consciousness: behavioural evidence. Conscious Cogn, 17(1), 37–48

    Article  PubMed  Google Scholar 

  • Mather, J. A. (2016). An invertebrate perspective on pain. Anim Sentience, 3, 12

    Google Scholar 

  • Mather, J. A., & Carere, C. (2016). Cephalopods are best candidates for invertebrate consciousness. Anim Sentience, 9, 2

    Google Scholar 

  • Merker, B. (2007). Consciousness without a cerebral cortex: A challenge for neuroscience and medicine. Behav Brain Sci, 30(1), 63–134

    Article  PubMed  Google Scholar 

  • Mondal, P. (2020). Mental structures as biosemiotic constraints on the functions of non-human (neuro)cognitive systems. Biosemiotics, 13, 385–410

    Article  Google Scholar 

  • Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B., & Worm, B. (2011). How many species are there on Earth and in the ocean? PLOS Biol, 9(8), e1001127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nafcha, O., & Gabay, S. (2019). Corticocentric bias in cognitive neuroscience. Anim Sentience, 23, 45

    Google Scholar 

  • Nagel, T. (1974). What is it like to be a bat? Phil Rev, 83(4), 435–450

    Article  Google Scholar 

  • Nomura, Y., Poirier, B., & Terning, J. (2018). Quantum Physics, Mini Black Holes, and the Multiverse: Debunking Common Misconceptions in Theoretical Physics. Cham: Springer

    Google Scholar 

  • Ocaña, F. M., Suryanarayana, S. M., Saitoh, K., Kardamakis, A. A., Capantini, L., Robertson, B., & Grillner, S. (2015). The lamprey pallium provides a blueprint of the mammalian motor projections from cortex. Curr Biol, 25(4), 413–423

    Article  PubMed  CAS  Google Scholar 

  • O’Doherty, F. (2013). A contribution to understanding consciousness: Qualia as phenotype. Biosemiotics, 6, 191–203

    Article  Google Scholar 

  • Ota, K., Suzuki, D. G., & Tanaka, S. (in press) Phylogenetic distribution and trajectories of visual consciousness: Examining Feinberg and Mallatt’s neurobiological naturalism.J Gen Philos Sci

  • Povinelli, D. J. (1996). Chimpanzee theory of mind?: the long road to strong inference. In P. Carruthers, & P. Smith (Eds.), Theories of Theories of Mind (pp. 293–329). Cambridge: Cambridge University Press

    Chapter  Google Scholar 

  • Povinelli, D. J., & Giambrone, S. J. (2000). Inferring other minds: failure of the argument by analogy. Philosophical Topics, 27(1), 161–201

    Google Scholar 

  • Prinz, J. (2005). A neurofunctional theory of consciousness. In A. Brook, & K. Akins (Eds.), Cognition and the Brain: The Philosophy and Neuroscience Movement (pp. 381–396). Cambridge: Cambridge University Press

    Chapter  Google Scholar 

  • Rose, J. D. (2002). The neurobehavioral nature of fishes and the question of aware- ness and pain. Rev Fisheries Sci, 10, 1–38

    Article  Google Scholar 

  • Reber, A. S. (2019). The First Minds. Caterpillars, Karyotes, and Consciousness. New York: Oxford University Press

  • Rose, J. D., Arlinghaus, R., Cooke, S. J., Diggles, B. K., Sawynok, W., Stevens, E. D., & Wynne, C. D. L. (2014). Can fish really feel pain? Fish Fisheries, 15, 97–133

    Article  Google Scholar 

  • Roth, G. (2013). The Long Evolution of Brains and Minds. Heidelberg: Springer

    Book  Google Scholar 

  • Roth, G., & Ursula, D. (2005). Evolution of the brain and intelligence. Trends Cogn Sci, 9(5), 250–257

    Article  PubMed  Google Scholar 

  • Roth, G., & Wullimann, M. F. (Eds.). (2000). Brain Evolution and Cognition. New York: Jon Wiley & Sons

    Google Scholar 

  • Sakurai, A., Newcomb, J. M., Lillvis, J. L., & Katz, P. S. (2011). Different roles for homologous interneurons in species exhibiting similar rhythmic behaviors. Curr Biol, 21(12), 1036–1043

    Article  CAS  PubMed  Google Scholar 

  • Sakurai, A., & Katz, P. S. (2017). Artificial synaptic rewiring demonstrates that distinct neural circuit configurations underlie homologous behaviors. Curr Biol, 27(12), 1721–1734E3

    Article  CAS  PubMed  Google Scholar 

  • Sandvik, H. (2008). Tree thinking cannot taken for granted: challenges for teaching phylogenetics. Theory Biosci, 2 127, 45–51

    Article  Google Scholar 

  • Sandvik, H. (2009). Anthropocentricisms in cladograms. Biol Philos, 24, 425–440

    Article  PubMed  Google Scholar 

  • Schilhab, T., Stjernfelt, F., & Deacon, T. (Eds.). (2012). The Symbolic Species Evolved. Dordrecht: Springer

    Google Scholar 

  • Sender, R., Fuchus, S., & Milo, R. (2016). Revised estimates for the number of human and bacteria cells in the body. PLoS Biol, 14(8), e1002533

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Searle, J. R. (1992/2002). The Rediscovery of the Mind. Cambridge: MIT Press

  • Searle, J. R. (2004). Mind: A Brief Introduction. Oxford: Oxford University Press

    Google Scholar 

  • Shigeno, S. (2017). “Brain evolution as an information flow designer: The ground architecture for biological and artificial general intelligence,”. In S. Shigeno, et al. (Ed.), Brain Evolution by Design: From Neural Origin to Cognitive Architecture (pp. 415–438). Tokyo: Springer Japan

    Chapter  Google Scholar 

  • Shettleworth, S. J. (1998). Cognition, Evolution, and Behavior. Oxford: Oxford University Press

    Google Scholar 

  • Smolin (1997). The Life of the Cosmos. Oxford: Oxford University Press

    Google Scholar 

  • Sneddon, L. U. (2011). Pain perception in fish: Evidence and implications for the use of fish. J Consciousness Studies, 18(9/10), 209–229

    Google Scholar 

  • Strawson, G. (2006). Realistic materialism: why physicalism entails panpsychism. J Conscious Stud, 13, 3–31

    Google Scholar 

  • Suryanarayana, S. M., Robertson, B., Wallén, P., & Grillner, S. (2017). The lamprey pallium provides a blueprint of the mammalian layered cortex. Curr Biol, 27(21), 3264–3277e5

    Article  CAS  PubMed  Google Scholar 

  • Suryanarayana, et al. (2020). The evolutionary origin of visual and somatosensory representation in the vertebrate pallium. Nat Ecol Evol, 4(4), 639–651

    Article  PubMed  Google Scholar 

  • Susskind, L. (2005). The Cosmic Landscape: String Theory and the Illusion of Intelligent Design (Reprint ed.). Little, Brown and Company, New York

  • Suzuki, D. G. (2021). Homology thinking reconciles the conceptual conflict between typological and population thinking. Biol Philos, 36, 23

    Article  Google Scholar 

  • Suzuki, D. G., & Grillner, S. (2018). The stepwise development of the lamprey visual system and its evolutionary implications. Biol Rev, 93(3), 1461–1477

    Article  PubMed  Google Scholar 

  • Suzuki, D. G., & Tanaka, S. (2017). A phenomenological and dynamic view of homology: Homologs as persistently reproducible modules. Biol Theor, 12(3), 169–180

    Article  Google Scholar 

  • Swan, L. (Ed.). (2013). Origins of Mind. Dordrecht: Springer

    Google Scholar 

  • Tononi, G. (2012). Integrated information theory of consciousness: an updated account. Arch Ital Biol, 150(2–3), 56–90

    CAS  PubMed  Google Scholar 

  • True, J. R., & Haag, E. S. (2001). Developmental system drift and exibility in evolutionary trajectories. Evol Dev, 3, 109–119

    Article  CAS  PubMed  Google Scholar 

  • von Uexküll, J., & Kriszat, G. (1934). Streifzüge durch die Umwelten von Tieren und Menschen: Ein Bilderbuch unsichtbarer Welten. Berlin: Springer

    Book  Google Scholar 

  • Verhoeven, C., Ren, Z., & Lunau, K. (2018). False-colour photography: a novel digital approach to visualize the bee view of flowers. J Pollinat Ecol, 23(12), 102–118

    Article  Google Scholar 

  • de Waal, F. (2006). Are We Smart Enough to Know How Smart Animals Are?. New York: W. W. Norton & Company

    Google Scholar 

  • Wagner, G. P. (2016). What is “homology thinking” and what is it for? J Exp Zool B Mol Dev Evol, 326(1), 3–8

    Article  PubMed  Google Scholar 

  • Wasserman, E. A., & Zentall, T. R. (2006). Comparative Cognition: Experimental Explorations of Animal Intelligence. Oxford: Oxford University Press

    Google Scholar 

Download references

Acknowledgements

I thank Drs. Sten Grillner, Koji Ota, Shreyas M. Suryanarayana, Senji Tanaka for valuable comments on the manuscript. This work was supported by the Japan Society for the Promotion of Science (JSPS) under Grant 20K00275 and 20K15855.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daichi G. Suzuki.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, D.G. The Anthropic Principle for the Evolutionary Biology of Consciousness: Beyond Anthropocentrism and Anthropomorphism. Biosemiotics 15, 171–186 (2022). https://doi.org/10.1007/s12304-022-09474-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12304-022-09474-y

Keywords

Navigation