Skip to main content

Advertisement

Log in

Origin and Evolution of the Brain

  • Original Paper
  • Published:
Biosemiotics Aims and scope Submit manuscript

Abstract

Modern biology has not yet come to terms with the presence of many organic codes in Nature, despite the fact that we can prove their existence. As a result, it has not yet accepted the idea that the great events of macroevolution were associated with the origin of new organic codes, despite the fact that this is the most parsimonious and logical explanation of those events. This is probably due to the fact that the existence of organic codes in all fundamental processes of life, and in all major transitions in the history of life, has enormous theoretical implications. It requires nothing less than a new theoretical framework, and that kind of change is inevitably slow. There are too many facts to reconsider, too many bits of history to weave together in a new mosaic. But this is what science is about, and the purpose of the present paper is to show that it can be done. More precisely, it is shown that the whole natural history of the brain can be revisited in the light of the organic codes. What is described here is only a bird’s-eye view of brain macroevolution, but it is hoped that the extraordinary potential of the organic codes can nevertheless come through. The paper contains also another message. The organic codes prove that life is based on semiosis, and are in fact the components of organic semiosis, the first and the most diffused form of semiosis on Earth, but not the only one. It will be shown that the evolution of the brain was accompanied by the development of two new types of sign processes. More precisely, it gave origin first to interpretive semiosis, mostly in vertebrates, and then to cultural semiosis, in our species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., & Watson, J. D. (1994). Molecular biology of the cell. New York: Garland.

    Google Scholar 

  • Baker, M. (2001). The atoms of language. The mind’s hidden rules of grammar. New York: Basic Books.

    Google Scholar 

  • Barash, Y., Calarco, J. A., Gao, W., Pan, Q., Wang, X., Shai, O., et al. (2010). Deciphering the splicing code. Nature, 465, 53–59.

    Article  PubMed  CAS  Google Scholar 

  • Barbieri, M. (1981). The ribotype theory on the origin of life. Journal of Theoretical Biology, 91, 545–601.

    Article  PubMed  CAS  Google Scholar 

  • Barbieri, M. (1985). The semantic theory of evolution. London: Harwood Academic Publishers.

    Google Scholar 

  • Barbieri, M. (1998). The organic codes. The basic mechanism of macroevolution. Rivista di Biologia-Biology Forum, 91, 481–514.

    CAS  Google Scholar 

  • Barbieri, M. (2003). The organic codes. An introduction to semantic biology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Barbieri, M. (2006). Semantic biology and the mind-body problem-the theory of the conventional mind. Biological Theory, 1(4), 352–356.

    Article  Google Scholar 

  • Barbieri, M. (2008). Biosemiotics: a new understanding of life. Naturwissenschaften, 95, 577–599.

    Article  PubMed  CAS  Google Scholar 

  • Barbieri, M. (2010). On the origin of language. Biosemiotics, 3, 201–223.

    Article  Google Scholar 

  • Bickerton, D. (1981). The roots of language. Karoma: Ann Arbour.

    Google Scholar 

  • Boeckx, C. (2006). Linguistic minimalism. New York: Oxford University Press.

    Google Scholar 

  • Boutanaev, A. M., Mikhaylova, L. M., & Nurminsky, D. I. (2005). The pattern of chromosome folding in interphase is outlined by the linear gene density profile. Molecular and Cellular Biology, 18, 8379–8386.

    Article  Google Scholar 

  • Changeaux, J.-P. (1983). L’Homme neuronal. Paris: Libraire Arthème Fayard.

    Google Scholar 

  • Chomsky, N. (1957). Syntactic structures. The Hague: Mouton.

    Google Scholar 

  • Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge: MIT.

    Google Scholar 

  • Chomsky, N. (1975). The logical structure of linguistic theory. Chicago: University of Chicago Press.

    Google Scholar 

  • Chomsky, N. (1995). The minimalist program. Cambridge: MIT.

    Google Scholar 

  • Chomsky, N. (2005). Three factors in language design. Linguistic Inquiry, 36, 1–22.

    Article  Google Scholar 

  • Churchland, P. S., & Sejnowski, T. J. (1993). The computational brain. Cambridge: MIT.

    Google Scholar 

  • Crick, F. (1994). The astonishing hypothesis: The scientific search for the soul. New York: Scribner.

    Google Scholar 

  • Deacon, T. W. (1997). The symbolic species: The co-evolution of language and the brain. New York: Norton.

    Google Scholar 

  • DeHaan, R. L. (1959). Cardia bifida and the development of pacemaker function in the early chicken heart. Developmental Biology, 1, 586–602.

    Article  Google Scholar 

  • Dhir, A., Emanuele Buratti, E., van Santen, M. A., Lührmann, R., & Baralle, F. E. (2010). The intronic splicing code: multiple factors involved in ATM pseudoexon definition. The EMBO Journal, 29, 749–760.

    Article  PubMed  CAS  Google Scholar 

  • Edelman, G. M. (1989). Neural darwinism. The theory of neuronal group selection. New York: Oxford University Press.

    Google Scholar 

  • Flames, N., Pla, R., Gelman, D. M., Rubenstein, J. L. R., Puelles, L., & Marin, O. (2007). Delineation of multiple subpallial progenitor domains by the combinatorial expression of transcriptional codes. The Journal of Neuroscience, 27(36), 9682–9695.

    Article  PubMed  CAS  Google Scholar 

  • Fodor, J. (1975). The language of thought. New York: Thomas Crowell Co.

    Google Scholar 

  • Fodor, J. (1983). The modularity of mind. An essay on faculty psychology. Cambridge: MIT.

    Google Scholar 

  • Gabius, H.-J. (2000). Biological information transfer beyond the genetic code: the sugar code. Naturwissenschaften, 87, 108–121.

    Article  PubMed  CAS  Google Scholar 

  • Gabius, H.-J., André, S., Kaltner, H., & Siebert, H.-C. (2002). The sugar code: functional lectinomics. Biochimica et Biophysica Acta, 1572, 165–177.

    PubMed  CAS  Google Scholar 

  • Gamble, M. J., & Freedman, L. P. (2002). A coactivator code for transcription. Trends in Biochemical Sciences, 27(4), 165–167.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, S. F. (2006). Developmental biology (8th ed.). Sunderland: Sinauer.

    Google Scholar 

  • Gould, S. J. (1977). Ontogeny and phylogeny. Cambridge: The Belknap Press of Harvard University Press.

    Google Scholar 

  • Hebb, D. O. (1949). The organization of behaviour. New York: John Wiley.

    Google Scholar 

  • Hilschmann, N., Barnikol, H. U., Barnikol-Watanabe, S., Götz, H., Kratzin, H., & Thinness, F. P. (2001). The Immunoglobulin-like genetic predetermination of the brain: the orotocadherins, blueprint of the neuronal network. Naturwissenschaften, 88, 2–12.

    Article  PubMed  CAS  Google Scholar 

  • Holland, J. A. (1992). Adaptation in natural and artificial systems. Cambridge: MIT.

    Google Scholar 

  • Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, USA, 79, 2554–2558.

    Article  CAS  Google Scholar 

  • Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of Physiology, 160, 106–154.

    PubMed  CAS  Google Scholar 

  • Hubel, D. H., & Wiesel, T. N. (1979). Brain mechanisms of vision. Scientific American, 241(3), 150–182.

    Article  PubMed  CAS  Google Scholar 

  • Jacob, F. (1982). The possible and the actual. New York: Pantheon Books.

    Google Scholar 

  • Jessell, T. M. (2000). Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nature Genetics, 1, 20–29.

    Article  CAS  Google Scholar 

  • Jacob, F., & Monod, J. (1961). Genetic regulatory mechanisms in the synthesis of proteins. Journal of Molecular Biology, 3, 318–356.

    Article  PubMed  CAS  Google Scholar 

  • Johnson-Laird, P. N. (1983). Mental models. Cambridge: Harvard University Press.

    Google Scholar 

  • Knights, C. D., Catania, J., Di Giovanni, S., Muratoglu, S., et al. (2006). Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate. The Journal of Cell Biology, 173, 553–544.

    Article  Google Scholar 

  • Kohonen, T. (1984). Self-organization and associative memory. New York: Springer.

    Google Scholar 

  • Levi-Montalcini, R. (1975). NGF: An uncharted route. In F. G. Worden (Ed.), The neurosciences—paths of discoveries. Cambrdbe: MIT.

    Google Scholar 

  • Levi-Montalcini, R. (1987). The nerve growth factor 35 years later. Science, 237, 1154–1162.

    Article  PubMed  CAS  Google Scholar 

  • Lotman, J. (1991). Universe of the mind: A semiotic theory of culture. Bloomington: Indiana University Press.

    Google Scholar 

  • Marquardt, T., & Pfaff, S. L. (2001). Cracking the transcriptional code for cell specification in the neural tube. Cell, 106, 651–654.

    Article  PubMed  CAS  Google Scholar 

  • Maslon, L. (1972). Wolf children and the problem of human nature. New York: Monthly Review Press.

    Google Scholar 

  • Morgan Lloyd, C. (1923). Emergent evolution. London: Williams and Norgate.

    Google Scholar 

  • Nicolelis, M., & Ribeiro, S. (2006). Seeking the neural code. Scientific American, 295, 70–77.

    Article  PubMed  Google Scholar 

  • Peirce, C. S. (1906). The basis of pragmaticism. In C. Hartshorne & P. Weiss (Eds.), The collected papers of Charles Sanders Peirce, Vols I–VI (pp. 1931–1935). Cambridge: Harvard University Press.

    Google Scholar 

  • Perissi, V., & Rosenfeld, M. G. (2005). Controlling nuclear receptors: the circular logic of cofactor cycles. Nature Molecular Cell Biology, 6, 542–554.

    Article  CAS  Google Scholar 

  • Pertea, M., Mount, S. M., & Salzberg, S. L. (2007). A computational survey of candidate exonic splicing enhancer motifs in the model plant Arabidopsis thaliana. BMC Bioinformatics, 8, 159.

    Article  PubMed  Google Scholar 

  • Portmann, A. (1941). Die Tragzeiten der Primaten und die Dauer der Schwangerschaft beim Menschen: ein Problem der vergleichen Biologie. Revue Suisse de Zoologie, 48, 511–518.

    Google Scholar 

  • Portmann, A. (1945). Die Ontogenese des Menschen als Problem der Evolutionsforschung. Verh. Schweiz. Naturf. Ges., 125, 44–53.

    Google Scholar 

  • Redies, C., & Takeichi, M. (1996). Cadherine in the developing central nervous system: an adhesive code for segmental and functional subdivisions. Developmental Biology, 180, 413–423.

    Article  PubMed  CAS  Google Scholar 

  • Rumelhart, D. E., & McClelland, J. L. (1986). Parallel distributed processing: Explorations in the microstructure of cognition. Cambridge: MIT.

    Google Scholar 

  • Sebeok, T. A. (1963). Communication among social bees; porpoises and sonar; man and dolphin. Language, 39, 448–466.

    Article  Google Scholar 

  • Sebeok, T. A. (1972). Perspectives in zoosemiotics. The Hague: Mouton.

    Google Scholar 

  • Sebeok, T. A. (1988). I think I am a verb: More contributions to the Doctrine of Signs. New York: Plenum.

    Google Scholar 

  • Sebeok, T. A. (1991). A sign is just a sign. Bloomington: Indiana University Press.

    Google Scholar 

  • Sebeok, T. A. (2001). Biosemiotics: Its roots, proliferation, and prospects. In A. Kull (Ed.), Jakob von Uexküll: A Paradigm for Biology and Semiotics. Semiotica, 134(1/4), 61–78.

  • Sebeok, T. A., & Danesi, M. (2000). The forms of meaning: Modeling systems theory and semiotic analysis. Berlin: Mouton de Gruyter.

    Google Scholar 

  • Searle, J. R. (1980). Minds, brains and programs. Behavioural Brain Science, 3, 417–457.

    Article  Google Scholar 

  • Searle, J. R. (1992). The rediscovery of the mind. Cambridge: MIT.

    Google Scholar 

  • Searle, J. R. (2002). Consciousness and language. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Segal, E., Fondufe-Mittendorf, Y., Chen, L., Thastrom, A., Fiels, Y., Moore, I. K., et al. (2006). A genomic code for nucleosome positioning. Nature, 442, 772–778.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, L., & Colman, D. R. (1999). The diversity of cadherins and implications for a synaptic adhesive code in the CNS. Neuron, 23, 427–430.

    Article  PubMed  CAS  Google Scholar 

  • Shattuck, R. (1981). The forbidden experiment: The story of the wild boy of Averyron. New York: Washington Square Press.

    Google Scholar 

  • Spemann, H. (1901). Entwicklungphysiologische Studien am Tritonei I. Wilhelm Roux’ Archiv für Entwicklungsmechanik., 12, 224–264.

    Article  Google Scholar 

  • Sperry, R. W. (1943). Visuomotor coordination in the newt (Triturus viridescensis) after regeneration of the optic nerve. The Journal of Comparative Neurology, 79, 33–55.

    Article  Google Scholar 

  • Sperry, R. W. (1963). Chemoaffinity in the orderly growth of nerve fibers patterns and connections. Proceedings of the National Academy of Science USA, 50, 703–710.

    Article  CAS  Google Scholar 

  • Strahl, B. D., & Allis, D. (2000). The language of covalent histone modifications. Nature, 403, 41–45.

    Article  PubMed  CAS  Google Scholar 

  • Tomkins, M. G. (1975). The metabolic code. Science, 189, 760–763.

    Article  PubMed  CAS  Google Scholar 

  • Trifonov, E. N. (1987). T ranslation framing code and frame-monitoring mechanism as suggested by the analysis of mRNA and 16s rRNA nucleotide sequence. Journal of Molecular Biology, 194, 643–652.

    Article  PubMed  CAS  Google Scholar 

  • Trifonov, E. N. (1989). The multiple codes of nucleotide sequences. Bulletin of Mathematical Biology, 51, 417–432.

    PubMed  CAS  Google Scholar 

  • Trifonov, E. N. (1996). Interfering contexts of regulatory sequence elements. Cabios, 12, 423–429.

    PubMed  CAS  Google Scholar 

  • Trifonov, E. N. (1999). Elucidating sequence codes: three codes for evolution. Annals of the New York Academy of Sciences, 870, 330–338.

    Article  PubMed  CAS  Google Scholar 

  • Tudge, C. (2000). The variety of life. A survey and a celebration of all the creatures that have ever lived. Oxford: Oxford University Press.

    Google Scholar 

  • Turner, B. M. (2000). Histone acetylation and an epigenetic code. BioEssay, 22, 836–845.

    Article  CAS  Google Scholar 

  • Turner, B. M. (2002). Cellular memory and the Histone Code. Cell, 111, 285–291.

    Article  PubMed  CAS  Google Scholar 

  • von Uexküll, J. (1909). Umwelt und Innenwelt der Tiere. Berlin: Julius Springer.

    Google Scholar 

  • Verhey, K. J., & Gaertig, J. (2007). The tubulin code. Cell Cycle, 6(17), 2152–2160.

    Article  PubMed  CAS  Google Scholar 

  • Woese, C. R. (1987). Bacterial evolution. Microbiol Reviews, 51, 221–271.

    CAS  Google Scholar 

  • Woese, C. R. (2000). Interpreting the universal phylogenetic tree. Proceedings of the National Academy of Science USA, 97, 8392–8396.

    Article  CAS  Google Scholar 

  • Woese, C. R. (2002). On the evolution of cells. Proceedings of the National Academy of Science USA, 99, 8742–8747.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I am deeply grateful to all members of the Biosemiotics discussion group who have taken part in a public debate which has considerably improved the original draft of this paper. I wish to thank in particular Howard Pattee, Kalevi Kull, Paul Cobley, Joachim De Beule, Peter Wills, Louis Goldberg, Angelo Recchia-Luciani, Søren Brier, Stanley Salthe, Vinicius Romanini and Don Favareau for their most appreciated suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello Barbieri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbieri, M. Origin and Evolution of the Brain. Biosemiotics 4, 369–399 (2011). https://doi.org/10.1007/s12304-011-9125-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12304-011-9125-1

Keywords

Navigation