Skip to main content

Advertisement

Log in

Insights into nitrogen fixing traits and population structure analyses in cowpea (Vigna unguiculata L. Walp) accessions grown in Ghana

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

With legumes, symbiotic N2 fixation can meet the species N demand and reduce the over-reliance on chemical fertilizers in tropical regions where N deficiency is a major factor limiting crop yields and increased agricultural sustainability. Therefore, to optimize the use of cowpea (Vigna unguiculata L. Walp) germplasm in effective breeding, evaluation of genetic diversity and quantification of N2 fixation are essential prerequisites. The aim of this study was to explore the level of diversity using SSR markers and N2-fixing traits in a set of cowpea germplasm grown in Ghana. We analysed 49 cowpea accessions collected from Northern Ghana using qualitative vegetative and N2 fixation traits, and simple sequence repeat (SSR) markers. Experimental field results revealed considerable morpho-physiological variation for plant growth habits, grain yield and symbiotic performance between and among the cowpea accessions. Results from both the 15N natural abundance and ureides in the xylem sap were able to descriminate between high and low levels of N2 fixation in cowpea accessions. Five subpopulations were identified within accessions inferred from STRUCTURE 2.3.4. A general linear model was used to assess the association of SSR markers with N2–fixing traits. There were significant (p ≤ 0.05) links between SSR markers and symbiosis-related traits such as nodule number, nodule dry weight, shoot dry weight, N-fixed, N derived from air (Ndfa), and relative uried-N (RU-N).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahiabor BDK, Fosu M, Atsu E et al (2011) Integrated soil fertility management for increased maize production in the degraded farmlands of the guinea savanna zone of ghana using devil-bean (Crotalaria retusa) and fertilizer nitrogen. In: Innovations as Key to the Green Revolution in Africa. Springer, Dordrecht, pp 183–189

  • Ayisi KK, Nkgapele RJ, Dakora FD et al (2000) Nodule formation and function in six varieties of cowpea (Vigna unguiculata L. Walp.) grown in a nitrogen-rich field soil in South Africa. Symbiosis (Rehovot) 28:17–31

    Google Scholar 

  • Bado BV, Bationo A, Lompo F, et al (2006) Long-term effects of cropping systems and fertilization on crop production, soil characteristics and nitrogen cycling in the Guinean and Sudanian savannah zones of Burkina Faso (West Africa). In: Manag Pract Improv Sustain Crop Prod Trop Acid Soils Results a Coord Res Proj Organ by Jt FAO/IAEA Program Nucl Tech Food Agric 47–64

  • Belane AK, Dakora FD (2009) Measurement of N2 fixation in 30 cowpea (Vigna unguiculata L. Walp.) genotypes under field conditions in Ghana, using the 15N natural abundance technique. Symbiosis 48:47–56. https://doi.org/10.1007/BF03179984

    Article  CAS  Google Scholar 

  • Borisov AY, Danilova TN, Koroleva TA et al (2007) Regulatory genes of garden pea (Pisum sativum L.) controlling the development of nitrogen-fixing nodules and arbuscular mycorrhiza: a review of basic and applied aspects. Appl Biochem Microbiol 43:237–243

    Article  CAS  Google Scholar 

  • Boukar O, Fatokun CA, Huynh B-L et al (2016) Genomic tools in cowpea breeding programs: status and perspectives. Front Plant Sci 7:757

    Article  PubMed  PubMed Central  Google Scholar 

  • Bourion V, Rizvi SMH, Fournier S et al (2010) Genetic dissection of nitrogen nutrition in pea through a QTL approach of root, nodule, and shoot variability. Theor Appl Genet 121:71–86

    Article  PubMed  Google Scholar 

  • Cary NC (2002) SAS Institute Inc. USA, SAS Wind Release 8

  • Cataldo DA, Maroon M, Schrader LE, Youngs VL (1975) Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plant Anal 6:71–80

    Article  CAS  Google Scholar 

  • Chidebe IN, Jaiswal SK, Dakora FD (2018) Distribution and phylogeny of microsymbionts associated with cowpea (Vigna unguiculata) nodulation in three agroecological regions of Mozambique. Appl Environ Microbiol 84:1–25. https://doi.org/10.1128/AEM.01712-17

    Article  CAS  Google Scholar 

  • Dakora FD, Aboyinga RA, Mahama Y, Apaseku J (1987) Assessment of N2 fixation in groundnut (Arachis hypogaea L.) and cowpea (Vigna unguiculata L. Walp) and their relative N contribution to a succeeding maize crop in Northern Ghana. Mircen J Appl Microbiol Biotechnol 3:389–399. https://doi.org/10.1007/BF00935697

    Article  Google Scholar 

  • Dikshit HK, Jhang T, Singh NK et al (2007) Genetic differentiation of Vigna species by RAPD, URP and SSR markers. Biol Plant 51:451–457

    Article  CAS  Google Scholar 

  • Dwivedi SL, Sahrawat KL, Upadhyaya HD et al (2015) Advances in host plant and rhizobium genomics to enhance symbiotic nitrogen fixation in grain legumes. In: Advances in agronomy, Vol 129. Elsevier, Academic Press pp 1–116

  • Earl DA et al (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Egbadzor KF, Ofori K, Yeboah M et al (2014) Diversity in 113 cowpea [Vigna unguiculata (L) Walp] accessions assessed with 458 SNP markers. Springerplus 3:541

    Article  PubMed  PubMed Central  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Fatokun C, Girma G, Abberton M et al (2018) Genetic diversity and population structure of a mini-core subset from the world cowpea (Vigna unguiculata (L.) Walp.) germplasm collection. Sci Rep 8:16035

    Article  PubMed  PubMed Central  Google Scholar 

  • Grunvald AK, Torres AR, Passianotto AL de L et al (2018) Identification of QTLs associated with biological nitrogen fixation traits in soybean using a genotyping-by-sequencing approach. Crop Sci 58:2523–2532

    Article  Google Scholar 

  • Gupta SK, Gopalakrishna T (2010) Development of unigene-derived SSR markers in cowpea (Vigna unguiculata) and their transferability to other Vigna species. Genome 53:508–523

    Article  CAS  PubMed  Google Scholar 

  • Heilig JA, Beaver JS, Wright EM et al (2017) QTL analysis of symbiotic nitrogen fixation in a black bean population. Crop Sci 57:118–129

    Article  CAS  Google Scholar 

  • Herridge DF, Bergersen FJ, Peoples MB (1990) Measurement of nitrogen fixation by soybean in the field using the ureide and natural 15N abundance methods. Plant Physiol 93:708–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horst WJ, Härdter R (1994) Rotation of maize with cowpea improves yield and nutrient use of maize compared to maize monocropping in an alfisol in the northern Guinea Savanna of Ghana. Plant Soil 160:171–183

    Article  CAS  Google Scholar 

  • Hungria M, Neves MCP (1987) Cultivar and Rhizobium strain effect on nitrogen fixation and transport in Phaseolus vulgaris L. Plant Soil 103:111–121

    Article  CAS  Google Scholar 

  • Hwang S, Ray JD, Cregan PB et al (2014) Genetics and mapping of quantitative traits for nodule number, weight, and size in soybean (Glycine max L.[Merr.]). Euphytica 195:419–434

    Article  CAS  Google Scholar 

  • Li C-D, Fatokun CA, Ubi B et al (2001) Determining genetic similarities and relationships among cowpea breeding lines and cultivars by microsatellite markers. Crop Sci 41:189–197

    Article  CAS  Google Scholar 

  • Lou Y, Hu L, Chen L et al (2015) Association analysis of simple sequence repeat (SSR) markers with agronomic traits in tall fescue (Festuca arundinacea Schreb.). PLoS One 10:e0133054

    Article  PubMed  PubMed Central  Google Scholar 

  • Mariotti A (1983) Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements. Nature 303:685

    Article  CAS  Google Scholar 

  • Mohammed M, Jaiswal S, Dakora F (2018) Distribution and correlation between phylogeny and functional traits of cowpea (Vigna unguiculata L. Walp.)-nodulating microsymbionts from Ghana and South Africa. Sci Rep 12:1–19. https://doi.org/10.1038/s41598-018-36324-0

    Article  CAS  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci 70:3321–3323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolás MF, Hungria M, Arias CAA (2006) Identification of quantitative trait loci controlling nodulation and shoot mass in progenies from two Brazilian soybean cultivars. F Crop Res 95:355–366

    Article  Google Scholar 

  • Nodari RO, Tsai SM, Guzman P et al (1993) Toward an integrated linkage map of common bean. III. Mapping genetic factors controlling host-bacteria interactions. Genetics 134:341–350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peoples MB, Faizah WA, Rerkasem B, Herridge DF (1989) Methods for evaluating nitrogen fixation by nodulated legumes in the field. Australian Centre for Int. Agric Res, Canberra

    Google Scholar 

  • Peoples MB, Herridge DF, Ladha JK (1995) Biological nitrogen fixation: an efficient source of nitrogen for sustainable agricultural production? Plant Soil 174:3–28

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pule-meulenberg F, Belane AK, Krasova-wade T, Dakora FD (2010) Symbiotic functioning and bradyrhizobial biodiversity of cowpea (Vigna unguiculata L. Walp.) in Africa. BMC Microbiol.10:89

  • Ravelombola W, Shi A, Weng Y et al (2018) Association analysis of salt tolerance in cowpea (Vigna unguiculata (L.) Walp) at germination and seedling stages. Theor Appl Genet 131:79–91

    Article  CAS  PubMed  Google Scholar 

  • Rohlf FJ (2009) Applied Biostatistics, I. & Exeter Software (Firm). NTSYS-pc: numerical taxonomy and multivariate analysis system

  • Santos MA, Geraldi IO, Garcia AAF et al (2013) Mapping of QTLs associated with biological nitrogen fixation traits in soybean. Hereditas 150:17–25

    Article  PubMed  Google Scholar 

  • Schubert KR (1986) Products of biological nitrogen fixation in higher plants: synthesis, transport, and metabolism. Annu Rev Plant Physiol 37:539–574

    Article  CAS  Google Scholar 

  • Shearer G, Kohl DH (1986) N2-fixation in field settings: estimations based on natural 15N abundance. Funct Plant Biol 13:699–756

    CAS  Google Scholar 

  • Shi A, Buckley B, Mou B et al (2016) Association analysis of cowpea bacterial blight resistance in USDA cowpea germplasm. Euphytica 208:143–155

    Article  CAS  Google Scholar 

  • Soto-Cerda BJ, Duguid S, Booker H et al (2014) Genomic regions underlying agronomic traits in linseed (Linum usitatissimum L.) as revealed by association mapping. J Integr Plant Biol 56:75–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tantasawat P, Trongchuen J, Prajongjai T et al (2010) Variety identification and comparative analysis of genetic diversity in yardlong bean (Vigna unguiculata spp. sesquipedalis) using morphological characters, SSR and ISSR analysis. Sci Hortic (Amsterdam) 124:204–216

    Article  CAS  Google Scholar 

  • Tanya P, Srinives P, Toojinda T et al (2005) Identification of SSR Markers Associated with N2-fixation components in soybean [Glycine max (L.) Merr.]. Korean J Genet 27:351

    CAS  Google Scholar 

  • Tsai SM, Nodari RO, Moon DH et al (1998) QTL mapping for nodule number and common bacterial blight in Phaseolus vulgaris L. In: Molecular microbial ecology of the soil. Springer, Dordrecht pp 135–145

  • Unkovich M, Herridge D, Peoples M et al (2008) Measuring plant-associated nitrogen fixation in agricultural systems. Australian Centre for International Agricultural Research (ACIAR), Australia

  • Valentine AJ, Benedito VA, Kang Y (2011) Legume nitrogen fixation and soil abiotic stress: from physiology to genomics and beyond. Annu Plant Rev 42:207–248

    CAS  Google Scholar 

  • Wiggins S, Keats S (2013) Looking back, peering forward: what has been learned from the food price spike of 2007-2008? ODI Brief 81, pp 25

  • Xu P, Wu X, Wang B et al (2010) Development and polymorphism of Vigna unguiculata ssp. unguiculata microsatellite markers used for phylogenetic analysis in asparagus bean (Vigna unguiculata ssp. sesquipedialis (L.) Verdc.). Mol Breed 25:675–684

    Article  CAS  Google Scholar 

  • Young EG, Conway CF (1942) On the estimation of allantoin by the Rimini-Schryver reaction. J Biol Chem 142:839–853

    CAS  Google Scholar 

  • Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17:155–160

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Liu X, Tong H et al (2014) Association mapping for important agronomic traits in core collection of rice (Oryza sativa L.) with SSR markers. PLoS One 9:e111508

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported with grants from the South African Department of Science and Technology, the Tshwane University of Technology, the National Research Foundation in Pretoria, and the South African Research Chair in Agrochemurgy and Plant Symbioses. HM is grateful for PhD fellowship received from the West African Agricultural Productivity Programme Phase two (WAAPP2A).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sanjay K. Jaiswal or Felix D. Dakora.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, H., Jaiswal, S.K., Mohammed, M. et al. Insights into nitrogen fixing traits and population structure analyses in cowpea (Vigna unguiculata L. Walp) accessions grown in Ghana. Physiol Mol Biol Plants 26, 1263–1280 (2020). https://doi.org/10.1007/s12298-020-00811-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-020-00811-4

Keywords

Navigation