Skip to main content
Log in

Reproductive sink enhanced drought induced senescence in wheat fertile line is associated with loss of antioxidant competence compared to its CMS line

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Reproductive sinks regulate monocarpic senescence in wheat as desinking delayed flag leaf senescence under irrigated condition. In this study, wheat cv. HW 2041 and its isonuclear male sterile line (CMS) were subjected to post-anthesis water deficit stress to understand the association between sink strength, senescence and drought response in relation to oxidative stress and antioxidant defense at cellular and sub-cellular level. CMS plants maintained better water relations and exhibited delayed onset and progression of flag leaf senescence in terms of green leaf area, chlorophyll and protein content than fertile plants under water deficit stress (WDS). Delayed senescence in CMS plants under water deficit stress was associated with less reactive oxygen species generation, lower damage to membranes and better antioxidant defense both in terms of antioxidant enzyme activities and metabolite content compared to fertile plants. Expression of some senescence associated genes (SAGs) such as WRKY transcription factor (WRKY53), glutamine synthetase1 (GS1), wheat cysteine protease (WCP2) and wheat serine protease (WSP) was lower while catalse 2 (CAT2) transcript levels were higher in the CMS plants compared to HW2041 during senescence under water deficit stress. Antioxidant defense in chloroplasts was better in CMS line under water deficit stress compared to HW2041. This is the first report showing that reproductive sink enhanced drought induced senescence in flag leaf of wheat fertile line is associated with higher oxidative stress and damage and loss of antioxidant competence compared to its sterile line under water deficit stress. Higher expression of some SAGs and decline in superoxide dismutase and ascorbate peroxidase activity in the chloroplasts also contributed to the accelerated senescence in fertile line compared to its CMS line under WDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AsA:

Ascorbic acid reduced

APX:

Ascorbate peroxidase

CAT:

Catalase

DHA:

Ascorbic acid oxidized

DAA:

Days after anthesis

GS1:

Glutamine synthetase

GSH:

Glutathione reduced

GSSG:

Glutathione oxidized

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

SAGs:

Senescence associated genes

WCP:

Wheat cysteine protease

WSP:

Wheat serine protease

WDS:

Water deficit stress

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  • Aggarwal PK, Sinha SK (1987) Performance of wheat and triticale varieties in a variable soil water environment. IV. Yield components and their association with grain yield. Field Crops Res 17:45–53

    Article  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Araus JL, Slafer GA, Reynolds MP, Royo C (2002) Plant breeding and drought in C3 cereals: what should we breed for? Ann Bot 200289:925–940

    Article  Google Scholar 

  • Asada K (1984) Chloroplasts: formation of active oxygen and its scavenging. Methods Enzymol 105:422–429

    Article  CAS  Google Scholar 

  • Barrs HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 15:413–428

    Article  Google Scholar 

  • Bartoli CG, Gómez F, Martínez DE, Guiamet JJ (2004) Mitochondria are the main target for oxidative damage in leaves of wheat (Triticum aestivum L.). J Exp Bot 55:1663–1669

    Article  PubMed  CAS  Google Scholar 

  • Bauer D, Biehler K, Fock H, Carrayol E, Hirel B, Migge A, Becker TW (1997) A role for cytosolic glutamine synthetase in the remobilization of leaf nitrogen during water stress in tomato. Physiol Plant 99:241–248

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assay and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  PubMed  CAS  Google Scholar 

  • Biswas AK, Mandal SK (1986) Monocarpic senescence in wheat: influence of sterile glumes and ear. Physiol Plant 67:431–434

    Article  CAS  Google Scholar 

  • Blum A, Mayer J, Golan G (1988) The effect of grain number (sink size) on source activity and its water relations in wheat. J Exp Bot 39:106–114

    Article  Google Scholar 

  • Borrell AK, Mullet JE, George-Jaeggli B, van Oosterom EJ, Hamme GL, Klein PE, Jordan DR (2014) Drought adaptation of stay-green cereals associated with canopy development, leaf anatomy, root growth and water uptake. J Exp Bot 65:6251–6263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidzinski J, Ishizaki K et al (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signaling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42:567–585

    Article  PubMed  CAS  Google Scholar 

  • Casano LM, Martin M, Sabater B (1994) Sensitivity of superoxide dismutase transcript levels and activities to oxidative stress is lower in mature-senescent than in young barley leaves. Plant Physiol 106:1033–1039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Casano LM, Gómez LD, Lascano HR, González CA, Trippi VS (1997) Inactivation and degradation of CuZn-SOD by active oxygen species in wheat chloroplasts exposed to photooxidative stress. Plant Cell Physiol 38:433–440

    Article  PubMed  CAS  Google Scholar 

  • Christopher JT, Christopher MJ, Borrell AK, Fletcher S, Chenu K (2016) Stay-green traits to improve wheat adaptation in well-watered and water limited environments. J Exp Bot 67:5159–5172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Simone V, Soccio M, Borrelli GM, Pastore D, Trono D (2014) Stay-green trait-antioxidant status interrelationship in durum wheat (Triticum durum) flag leaf during post-flowering. J Plant Res 127:159–171

    Article  PubMed  CAS  Google Scholar 

  • Derkx AP, Orford S, Griffiths S, Foulkes MJ, Hawkesford MJ (2012) Identification of differentially senescing mutants of wheat and impacts on yield, biomass and nitrogen partitioning. J Integr Plant Biol 54:555–566

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gregersen PL, Holm PB (2007) Transcriptome analysis of senescence in the flag leaf of wheat (Triticum aestivum L.). Plant Biotechnol J 5:192–206

    Article  PubMed  CAS  Google Scholar 

  • Gregersen PL, Culetic A, Boschian L, Krupinska K (2013) Plant senescence and crop productivity. Plant Mol Biol 82(6):603–622

    Article  PubMed  CAS  Google Scholar 

  • Guo Y, Gan SS (2014) Translational researches on leaf senescence for enhancing plant productivity and quality. J Exp Bot 65:3901–3913

    Article  PubMed  Google Scholar 

  • Hameed A, Bibi N, Akhter J, Iqbal N (2011) Differential changes in antioxidants, proteases, and lipid peroxidation in flag leaves of wheat genotypes under different levels of water deficit conditions. Plant Physiol Biochem 49:178–185

    Article  PubMed  CAS  Google Scholar 

  • Hatch MD (1978) A simple spectrophotometric assay for fumarate hydratase in crude tissue extracts. Anal Biochem 85:271–275

    Article  PubMed  CAS  Google Scholar 

  • Havé M, Leitao L, Bagard M, Castell JF, Repellin A (2015) Protein carbonylation during natural leaf senescence in winter wheat, as probed by fluorescein-5-thiosemicarbazide. Plant Biol 17:973–979

    Article  PubMed  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  PubMed  CAS  Google Scholar 

  • Hörtensteiner S, Feller U (2002) Nitrogen metabolism and remobilization during senescence. J Exp Bot 53:927–937

    Article  PubMed  Google Scholar 

  • Huseynova IM (2012) Photosynthetic characteristics and enzymatic antioxidant capacity of leaves from wheat cultivars exposed to drought. Biochem Biophys Acta 1817:1516–1523

    PubMed  CAS  Google Scholar 

  • Jiménez A, Hernández JA, Pastori G, del Río LA, Sevilla F (1998) Role of the ascorbate–glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol 118:1327–1335

    Article  PubMed  PubMed Central  Google Scholar 

  • Joshi AK, Kumari M, Singh VP, Reddy CM, Kumar S, Rane J, Chand R (2007) Stay green trait: variation, inheritance and its association with spot blotch resistance in spring wheat (Triticum aestivum L.). Euphytica 153:59–71

    Article  Google Scholar 

  • Kato M, Kobayashi K, Ogiso E, Yokoo M (2004) Photosynthesis and dry-matter production during ripening stage in a female-sterile line of rice. Plant Prod Sci 7:184–188

    Article  Google Scholar 

  • Khanna-Chopra R (2012) Leaf senescence and abiotic stresses share reactive oxygen species-mediated chloroplast degradation. Protoplasma 249:469–481

    Article  PubMed  CAS  Google Scholar 

  • Khanna-Chopra R, Chauhan S (2015) Wheat cultivars differing in heat tolerance show a differential response to oxidative stress during monocarpic senescence under high temperature stress. Protoplasma 252:1241–1251

    Article  PubMed  CAS  Google Scholar 

  • Khanna-Chopra R, Selote DS (2007) Acclimation to drought stress generates oxidative stress tolerance in drought-resistant than-susceptible wheat cultivar under field conditions. Environ Exp Bot 60:276–283

    Article  CAS  Google Scholar 

  • Khanna-Chopra R, Sinha SK (1988) Enhancement of drought-induced senescence by the reproductive sink in fertile lines of wheat and sorghum. Ann Bot 61:649–653

    Article  Google Scholar 

  • Khanna-Chopra R, Nutan KK, Pareek A (2013) Regulation of leaf senescence: role of reactive oxygen species. In: Biswal B, Krupinska K, Biswal UC (eds) Plastid development in leaves during growth and senescence. Springer, Dordrecht, pp 393–416

    Chapter  Google Scholar 

  • Koide K, Ishihara K (1992) Effects of ear removal on photosynthesis of the flag leaf during grain filling in wheat. Jpn J Crop Sci 61:659–667

    Article  CAS  Google Scholar 

  • Kristensen BK, Askerlund P, Bykov NV, Egsgaard H, Møller IM (2004) Identification of oxidized proteins in the matrix of rice leaf mitochondria by immunoprecipitation and two-dimensional liquid chromatography-tandem mass spectrometry. Phytochemistry 65:1839–1851

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Seo PJ, Lee HJ, Park CM (2012) A NAC transcription factor NTL4 promotes reactive oxygen species production during drought-induced leaf senescence in Arabidopsis. Plant J 70:831–844

    Article  PubMed  CAS  Google Scholar 

  • Levine RL, Williams JA, Stadtman ER, Shacter E (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–357

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Wang M, Zhang F, Xu Y, Chen X, Qin X, Wen X (2016) Effect of post-silking drought on nitrogen partitioning and gene expression patterns of glutamine synthetase and asparagine synthetase in two maize (Zea mays L.) varieties. Plant Physiol Biochem 102:62–69

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Lilley RMC, Fitzgerald MP, Rienits KG, Walker DA (1975) Criteria of intactness and the photosynthetic activity of spinach chloroplast preparations. New Phytol 75:1–10

    Article  CAS  Google Scholar 

  • Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Ann Rev Plant Biol 58:115–136

    Article  CAS  Google Scholar 

  • Loggini B, Scartazza A, Brugnoli E, Navari-Izzo F (1999) Antioxidant defense system, pigment composition and photosynthetic efficiency in two wheat subjected to drought. Plant Physiol 119:1091–1099

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • MacKown CT, Van Sanford DA, Zhang N (1992) Wheat vegetative nitrogen compositional changes in response to reduced reproductive sink strength. Plant Physiol 99:1469–1474

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Merewitz EB, Gianfagna T, Huang B (2011) Protein accumulation in leaves and roots associated with improved drought tolerance in creeping bentgrass expressing an ipt gene for cytokinin synthesis. J Exp Bot 62:5311–5333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miao Y, Laun T, Zimmermann P, Zentgraf U (2004) Targets of WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol 55:853–867

    Article  PubMed  CAS  Google Scholar 

  • Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Article  PubMed  CAS  Google Scholar 

  • Munné-Bosch S, Alegre L (2002) Plant aging increases oxidative stress in chloroplasts. Planta 214:608–615

    Article  PubMed  CAS  Google Scholar 

  • Munné-Bosch S, Jubany-Marí T, Alegre L (2001) Drought-induced senescence is characterized by a loss of antioxidant defences in chloroplasts. Plant Cell Environ 24:1319–1327

    Article  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Navari-Izzo F, Quartacci MF, Pinzino C, Vecchia FD, Sgherri CLM (1998) Thylakoid bound and stromal anti-oxidative enzymes in wheat treated with excess copper. Physiol Plant 104:630–638

    Article  CAS  Google Scholar 

  • Noctor G, Mhamdi A, Foyer CH (2014) The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiol 164:1636–1648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Noh YS, Amasino RM (1999) Identification of a promoter region responsible for the senescence-specific expression of SAG12. Plant Mol Biol 41:181–194

    Article  PubMed  CAS  Google Scholar 

  • Nooden LD (1988) Whole plant senescence. In: Nooden LD, Leopold AC (eds) Senescence and aging in plants. Academic Press, San Diego, pp 391–439

    Google Scholar 

  • Palma JM, Jiménez A, Sandalio LM, Corpas FJ, Lundqvist M, Gómez M, del Río LA (2006) Antioxidative enzymes from chloroplasts, mitochondria, and peroxisomes during leaf senescence of nodulated pea plants. J Exp Bot 57:1747–1758

    Article  PubMed  CAS  Google Scholar 

  • Panchuk II, Zentgraf U, Volkov RA (2005) Expression of the APX gene family during leaf senescence of Arabidopsis thaliana. Planta 222:926–932

    Article  PubMed  CAS  Google Scholar 

  • Pic E, de la Serve BT, Tardieu F, Turc O (2002) Leaf senescence induced by mild water deficit follows the same sequence of macroscopic, biochemical, and molecular events as monocarpic senescence in pea. Plant Physiol 128:236–246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prochazkova D, Wilhelmova N (2007) Leaf senescence and activities of the antioxidant enzymes. Biol Plant 51:401–406

    Article  CAS  Google Scholar 

  • Qin G, Meng X, Wang Q, Tian S (2009) Oxidative damage of mitochondrial proteins contributes to fruit senescence: a redox proteomics analysis. J Proteome Res 8:2449–2462

    Article  PubMed  CAS  Google Scholar 

  • Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. PNAS USA 104:19631–19636

    Article  PubMed  Google Scholar 

  • Rosenwasser S, Rot I, Sollner E, Meyer AJ, SmithY Leviatan N, Fluhr R, Friedman H (2011) Organelles contribute differentially to ROS-related events during extended darkness. Plant Physiol 156:185–201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schaedle M, Bassham A (1977) Chloroplast glutathione reductase. Plant Physiol 53:1011–1012

    Article  Google Scholar 

  • Scholander PF, Hammel HT, Hemmingsen EA, Bradstreet ED (1964) Hydrostatic pressure and osmotic potential in leaves of mangroves and some other plants. PNAS USA 52:119–125

    Article  PubMed  CAS  Google Scholar 

  • Selote DS, Khanna-Chopra R (2006) Drought acclimation confers oxidative stress tolerance by inducing co-ordinated antioxidant defense at cellular and subcellular level in leaves of wheat seedlings. Physiol Plant 127:494–506

    Article  CAS  Google Scholar 

  • Semwal VK, Singh B, Khanna-Chopra R (2014) Delayed expression of SAGs correlates with longevity in CMS wheat plants compared to its fertile plants. Physiol Mol Biol Plants 20:191–199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shao H, Wang H, Tang X (2015) NAC transcription factors in plants multiple abiotic stress responses: progress and prospects. Front Plant Sci 6:902. https://doi.org/10.3389/fpls.2015.00902

    Article  PubMed  PubMed Central  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  PubMed  CAS  Google Scholar 

  • Simova-Stoilova L, Demirevska K, Petrova T, Tsenov N, Feller U (2009) Antioxidative protection and proteolytic activity in tolerant and sensitive wheat (Triticum aestivum L.) varieties subjected to long-term field drought. Plant Growth Regul 58:107–117

    Article  CAS  Google Scholar 

  • Smakowska E, Czarna M, Janska H (2014) Mitochondrial ATP-dependent proteases in protection against accumulation of carbonylated proteins. Mitochondrion 19:245–251

    Article  PubMed  CAS  Google Scholar 

  • Srivalli B, Khanna-Chopra R (2001) Induction of new isoforms of superoxide dismutase and catalase enzymes in the flag leaf of wheat during monocarpic senescence. Biochem Biophys Res Commun 288:1037–1042

    Article  PubMed  CAS  Google Scholar 

  • Srivalli B, Khanna-Chopra R (2004) The developing reproductive sink induces oxidative stress to mediate nitrogen mobilization during monocarpic senescence in wheat. Biochem Biophys Res Commun 325:198–202

    Article  PubMed  CAS  Google Scholar 

  • Srivalli S, Khanna-Chopra R (2009) Delayed wheat flag leaf senescence due to removal of spikelets is associated with increased activities of leaf antioxidant enzymes, reduced glutathione/oxidized glutathione ratio and oxidative damage to mitochondrial proteins. Plant Physiol Biochem 47:663–670

    Article  PubMed  CAS  Google Scholar 

  • Thomas H, Howarth CJ (2000) Five ways to stay green. J Exp Bot 51:329–337

    Article  PubMed  CAS  Google Scholar 

  • Thomas H, Ougham H (2014) The stay-green trait. J Exp Bot 65:3889–3900

    Article  PubMed  CAS  Google Scholar 

  • Tian FX, Gong JF, Wang GP, Wang GK, Fan ZY, Wang W (2012) Improved drought resistance in a wheat stay-green mutant tasg1 under field conditions. Biol Plant 56:509–515

    Article  Google Scholar 

  • Tian FX, Gong J, Zhang J, Zhang M, Wang G, Li A, Wang W (2013) Enhanced stability of thylakoid membrane proteins and antioxidant competence contribute to drought stress resistance in the tasg1 wheat stay-green mutant. J Exp Bot 64:1509–1520

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Uauy C, Brevis JC, Dubcovsky J (2006) The high grain protein content gene Gpc-B1 accelerates senescence and has pleiotropic effects on protein content in wheat. J Exp Bot 57:2785–2794

    Article  PubMed  CAS  Google Scholar 

  • Veljovic-Jovanovic S, Noctor G, Foyer CH (2002) Are leaf hydrogen peroxide concentrations commonly overestimated? The potential influence of artefactual interference by tissue phenolics and ascorbate. Plant Physiol Biochem 40:501–507

    Article  CAS  Google Scholar 

  • Verma V, Foulkes MJ, Worland AJ, Sylvester-Bradley R, Caligari PDS, Snape JW (2004) Mapping quantitative trait loci for flag leaf senescence as a yield determinant in winter wheat under optimal and drought-stressed environments. Euphytica 135:255–263

    Article  CAS  Google Scholar 

  • Wang SY, Jiao HJ, Faust M (1991) Changes in ascorbate, glutathione, and related enzyme activities during thidiazuron-induced bud break of apple. Physiol Plant 82:231–236

    Article  CAS  Google Scholar 

  • Weaver LM, Gan S, Quirino B, Amasino RM (1998) A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment. Plant Mol Biol 37:455–469

    Article  PubMed  CAS  Google Scholar 

  • Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Van Montagu M, Inze D, Van Camp W (1997) Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J 16:4806–4816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Woo HR, Kim HJ, Nam HG, Lim PO (2013) Plant leaf senescence and death—regulation by multiple layers of control and implications for aging in general. J Cell Sci 126:4823–4833

    Article  PubMed  CAS  Google Scholar 

  • Wu A, Allu AD, Garapati P, Siddiqui H, Dortay H, Zanor MI, Asensi-Fabado MA, Munné-Bosch S, Antonio C, Tohge T, Fernie AR (2012) JUNGBRUNNEN1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in Arabidopsis. Plant Cell 24:482–506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao Y, Chan Z, Gao J, Xing L, Cao M, Yu C, Gong Y, Zhu JK (2016) ABA receptor PYL9 promotes drought resistance and leaf senescence. PNAS USA 113:1949–1954

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann P, Orendi G, Heinlein C, Zentgraf U (2006) Senescence specific regulation of catalases in Arabidopsis thaliana (L.) Heynh. Plant Cell Environ 29:1049–1060

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Dr. (Mrs.) R. Khanna-Chopra was awarded Emeritus Scientist Scheme by Council of Scientific and Industrial Research India which supported the present research. VKS thanks Council of Scientific and Industrial Research India for Research Associate fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renu Khanna-Chopra.

Ethics declarations

Conflict of interest

Dr. Khanna-Chopra has nothing to disclose.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1.

Effect of water deficit stress on the expression of senescence associated genes WRKY53, GS1, WCP2, WSP and CAT2 genes in flag leaf of wheat cv. HW2041 and its CMS line during monocarpic senescence under water deficit stress (TIFF 21636 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semwal, V.K., Khanna-Chopra, R. Reproductive sink enhanced drought induced senescence in wheat fertile line is associated with loss of antioxidant competence compared to its CMS line. Physiol Mol Biol Plants 24, 591–604 (2018). https://doi.org/10.1007/s12298-018-0549-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-018-0549-9

Keywords

Navigation