Skip to main content

Elucidating the role of osmotic, ionic and major salt responsive transcript components towards salinity tolerance in contrasting chickpea (Cicer arietinum L.) genotypes

Abstract

The growth of chickpea (Cicer arietinum L.) is extremely hampered by salt stress. Understanding of physio-biochemical and molecular attributes along with morphological traits contributing to the salinity tolerance is important for developing salt tolerant chickpea varieties. To explore these facts, two genotypes CSG8962 and HC5 with contrasting salt tolerance were evaluated in the salinity stress (Control and 120 mM NaCl) conditions. CSG8962 maintained lower Na/K ratio in root and shoot, trammeled Na translocation to the shoots from roots compared to HC5 which ascribed to better exclusion of salt from its roots and compartmentation in the shoot. In chickpea, salt stress specifically induced genes/sequences involved at several levels in the salt stress signaling pathway. Higher induction of trehalose 6 phosphate synthase and protein kinase genes pertaining to the osmotic and signaling modules, respectively, were evident in CSG8962 compared to HC5. Further transcripts of late embryogenesis abundant, non-specific lipid transfer protein, HI and 219 genes/sequences were also highly induced in CSG8962 compared to HC5 which emphasizes the better protection of cellular membranous network and membrane-bound macromolecules under salt stress. This further suppressed the stress enhanced electrolyte leakage, loss of turgidity, promoted the higher compatible solute accumulation and maintained better cellular ion homoeostasis in CSG8962 compared to HC5. Our study further adds to the importance of these genes in salt tolerance by comparing their behavior in contrasting chickpea genotypes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abdelgawad ZA, Hathout TA, El-Khallal SM, Said EM, Al-Mokadem AZ (2014) Accumulation of trehalose mediates salt adaptation in rice seedlings. Am Eurasian J Agric Environ Sci 14(12):1450–1463

    Google Scholar 

  2. Al-Mutawa MM (2003) Effect of salinity on germination and seedling growth of chickpea (Cicer arietinum L.) genotypes. Int J Agric Biol 5:227–229

    Google Scholar 

  3. Araujo SS, Beebe S, Crespi M, Delbreli B, Gonzaliz EM, Gruber V, Legeune-Henaut I, Link W, Monteros MJ, Prats E, Rao L, Vadez V, Patto MCV (2015) Abiotic stress responses in legumes: strategies used to cope with environmental challenges. Crit Rev Plant Sci 34:237–280

    CAS  Article  Google Scholar 

  4. Arefian M, Shafaroudi SM (2015) Physiological and gene expression analysis of extreme chickpea (Cicer arietinum L.) genotypes in response to salinity stress. Acta Physiol Plant 37:193

    Article  Google Scholar 

  5. Arefian M, Vessal S, Bagheri A (2014) Biochemical changes in response to salinity in chickpea (Cicer arietinum L.) during early stages of seedling growth. J Anim Plant Sci 24:1849–1857

    Google Scholar 

  6. Arnoldi A, Zanoni C, Lammi C, Boschin G (2014) The role of grain legumes in the prevention of hypercholesterolemia and hypertension. Crit Rev Plant Sci 33:1–3

    Article  Google Scholar 

  7. Arnon DI (1949) Copper enzymes in the intact chloroplast. Polyphenoxidase in Beta vulgaris. Plant Physiol 24:1–15

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Ashraf M, Foolad MA (2007) Improving plant abiotic stress resistance by exogenous application of osmoprotectants glycine betaine and proline. Environ Exp Bot 59:206–216

    CAS  Article  Google Scholar 

  9. Bates LS, Waklren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    CAS  Article  Google Scholar 

  10. Berger JD, Abbo S, Turner NC (2003) Plant genetic resources. ecogeography of annual wild cicer species: the poor state of the world collection. Crop Sci 43:1076–1090

    Article  Google Scholar 

  11. Cotsaftis O, Plett D, Johnson AAT, Walia H, Wilson C, Ismail AM, Baumann U (2011) Root-specific transcript profiling of contrasting rice genotypes in response to salinity stress. Mol Plant 4:25–41

    CAS  Article  PubMed  Google Scholar 

  12. Demiroğlu G, Khalvati MA, Avcıoğlu R (2001) Effect of different salt concentrations on the resistance of maize cultivars (2) some physiological characteristics and ion accumulation in early growth. Turk J Field Crops 6:55–59

    Google Scholar 

  13. Deokar AA, Kondawar V, Jain PK, Karuppayil SM, Raju N, Vadez V, Varshney RK, Srinivasan R (2011) Comparative analysis of expressed sequence tags (ESTs) between drought-tolerant and susceptible genotypes of chickpea under terminal drought stress. BMC Plant Biol 11:70–90

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Dua RP (1998) Salinity tolerance in chickpea (Cicer arietinum L.). Indian J Plant Physiol 3:102–106

    Google Scholar 

  15. Duan J, Cai W (2012) OsLEA3- 2, an abiotic stress induced gene of rice plays a key role in salt and drought tolerance. PLoS ONE 7:e45117

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. El-Bassiouny HMS, Bekheta MA (2005) Effect of salt stress on relative water content, lipid peroxidation, polyamines, amino acids and ethylene of two wheat cultivars. Int J Agric Biol 7(3):363–368

    CAS  Google Scholar 

  17. Fang X, Turner NC, Yan G, Li F, Siddique KHM (2010) Flower numbers, pod production, pollen viability, and pistil function are reduced and flower and pod abortion increased in chickpea (Cicer arietinum L.) under terminal drought. J Exp Bot 61(2):335–345

    CAS  Article  PubMed  Google Scholar 

  18. FAO (2015) Status of the world’s soil resources (SWSR)—main report. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  19. Flowers TJ, Gaur PM, Gowda CL, Krishnamurthy L, Samineni S, Siddique KH, Turner NC, Vadez V, Varshney RK, Colmer TD (2010) Salt sensitivity in chickpea. Plant Cell Environ 33(4):490–509

    CAS  Article  PubMed  Google Scholar 

  20. Flowers TJ, Munns R, Colmer TD (2015) Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann Bot 115:419–431

    CAS  Article  PubMed  Google Scholar 

  21. Gao WR, Wang XS, Liu QY, Peng H, Chen C, Li JG, Zhang JS, Hu SN, Ma H (2008) Comparative analysis of ESTs in response to drought stress in chickpea (C. arietinum L.). Biochem Biophys Res Commun 376:578–583

    CAS  Article  PubMed  Google Scholar 

  22. Giri J (2011) Glycinebetaine and abiotic stress tolerance in plants. Plant Signal Behav 6:1746–1751

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci 5:151

    Article  PubMed  PubMed Central  Google Scholar 

  24. Greive CM, Grattan SR (1983) Rapid assay for determination of water-soluble quaternary amino compounds. Plant Soil 70:303–307

    Article  Google Scholar 

  25. Gu H, Jia Y, Wang X, Chen Q, Shi S, Ma L, Zhang J, Zhang H, Ma H (2012) Identification and characterization of a LEA family gene CarLEA4 from chickpea (Cicer arietinum L.). Mol Biol Rep 39(4):3565–3572

    CAS  Article  PubMed  Google Scholar 

  26. Hackel C, Zinkevich T, Belton P, Achilles A, Reichert D, Krushelnitsky A (2012) The trehalose coating effect on the internal protein dynamics. Phys Chem Chem Phys 14:2727–2734

    CAS  Article  PubMed  Google Scholar 

  27. Hanumantharao B, Nair RM, Nayyar H (2016) Salinity and high temperature tolerance in Mungbean [Vigna radiata (L.) Wilczek] from a physiological perspective. Front Plant Sci 7:957

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hong-Bo S, Zong-Suo L, Ming-An S (2005) LEA proteins in higher plants: structure, function, gene expression and regulation. Colloids Surf B 45:131–135

    Article  Google Scholar 

  29. Hu T, Yi H, Hu L (2013) Stomatal and metabolic limitations to photosynthesis resulting from NaCl stress in perennial ryegrass genotypes differing in salt tolerance. J Am Soc Hortic Sci 138:350–357

    Google Scholar 

  30. Jamil M, Lee DB, Jung KY, Ashraf M, Lee SC, Rhal ES (2006) Effect of salt (NaCl) stress on germination and early seedling growth of four vegetables species. J Cent Eur Agric 7:273–282

    Google Scholar 

  31. Jang IC, Oh SJ, Seo JS, Choi WB, Song SI, Kim CH, Seo HS, Do Choi Y, Nahm BH, Kim JK (2003) Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol 131(2):516–524

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Kader MA (2005) A comparison of seed germination calculation formulae and the associated interpretation of resulting data. J Proc R Soc N S W 138:65–75

    Google Scholar 

  33. Katsuhara M, Mimura T, Tazawa M (1990) ATP-Regulated ion channels in the plasma membrane of a characeae alga, Nitellopsis obtuse. Plant Physiol 93:343–346

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Kavar T, Maras M, Kidric M, Sustar-Vozlic J, Meglic V (2012) The expression profiles of selected genes in different bean species (Phaseolus spp.) as response to water deficit. J Cent Eur Agric 12:557–576

    Article  Google Scholar 

  35. Khan HA, Siddique KHM, Munir R, Colmer TD (2015) Salt sensitivity in chickpea: growth, photosynthesis, seed yield components and tissue ion regulation in contrasting genotypes. J Plant Physiol 182:1–12

    CAS  Article  PubMed  Google Scholar 

  36. Kobayashi F, Takumi S, Nakata M, Ohno R, Nakamura T, Nakamura C (2004) Comparative study of the expression profiles of the Cor/Lea gene family in two wheat cultivars with contrasting levels of freezing tolerance. Physiol Plant 120:585–594

    CAS  Article  PubMed  Google Scholar 

  37. Kotula L, Khan HA, Quealy J, Turner NC, Vadez V, Siddique KHM, Clode PL, Colmer TD (2015) Salt sensitivity in chickpea (Cicer arietinum L.): ions in reproductive tissues and yield components in contrasting genotypes. Plant Cell Environ 38:1565–1577

    CAS  Article  PubMed  Google Scholar 

  38. Krishnamurthy P, Ranathunge R, Nayak S, Schreiber L, Mathew MK (2011) Root barriers block Na traffic to shoots in rice (Oryza sativa L.). J Exp Bot 62:4215–4228

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Kronzucker HJ, Britto DT (2011) Sodium transport in plants: a critical review. New Phytol 189(1):54–81

    CAS  Article  PubMed  Google Scholar 

  40. Kulik A, Wawer L, Krzywińska E, Bucholc M, Dobrowolska G (2011) SNRK2 protein kinases-key regulators of plant response to abiotic stresses. OMICS 15(12):859–872

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Kume S, Kobayashi F, Ishibashi M, Ohno R, Nakamura C, Takumi S (2005) Differential and coordinated expression of Cbf and Cor/Lea genes during long-term cold acclimation in two wheat cultivars showing distinct levels of freezing tolerance. Genes Genet Syst 80:185–197

    CAS  Article  PubMed  Google Scholar 

  42. Li HW, Zang BS, Deng XW, Wang XP (2011) Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta 234:1007–1018

    CAS  Article  PubMed  Google Scholar 

  43. Liao YD, Lin KH, Chen CC (2016) Oryza sativa protein phosphatase 1a (OsPP1a) involved in salt stress tolerance in transgenic rice. Mol Breed 36:22

    Article  Google Scholar 

  44. Liu X, Wang Z, Wang LL, Wu RH, Phillips J, Deng X (2009) LEA4 group genes from the resurrection plant Boea hygrometrica confer dehydration tolerance in transgenic tobacco. Plant Sci 176:90–98

    CAS  Article  Google Scholar 

  45. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ddct method. Methods 25:402–408

    CAS  Article  PubMed  Google Scholar 

  46. Maathuis FJM, Amtmann A (1999) K nutrition and Na toxicity: the basis of cellular K/Na ratios. Ann Bot 84(2):123–133

    CAS  Article  Google Scholar 

  47. Maliro MFA, McNeil D, Kollmorgen J, Pittock C, Redden R (2004) Screening Chickpea (Cicer arietinum L.) and wild relatives germplasm from diverse country sources for salt tolerance. In: Proceedings of the international crop science congress, Brisbane

  48. Mantri NL, Ford R, Coram TE, Pang ECK (2007) Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought. BMC Genom 8:303

    Article  Google Scholar 

  49. Medini M, Baum M, Hamza S (2009) Transcript accumulation of putative drought responsive genes in drought-stressed chickpea seedlings. Afr J Biotechnol 8:4441–4449

    CAS  Google Scholar 

  50. Molazem D, Qurbanov EM, Dunyamaliyev SA (2010) Role of proline, Na and chlorophyll content in salt tolerance of corn (Zea mays L.). Am Eurasian J Agric Environ Sci 9:319–324

    CAS  Google Scholar 

  51. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  Article  PubMed  Google Scholar 

  52. Negrão S, Schmöckel SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119:1–11

    Article  PubMed  Google Scholar 

  53. Nunes C, de Sousa Araujo S, da Silva JM, Fevereiro MPS, da Silva AB (2008) Physiological responses of the legume model Medicago truncatula cv. Jemalong to water deficit. Environ Exp Bot 63:289–296

    CAS  Article  Google Scholar 

  54. Pan Y, Li J, Jiao L, Li C, Zhu D, Yu J (2016) A non-specific Setaria italica lipid transfer protein gene plays a critical role under abiotic stress. Front Plant Sci 7:1752–1766

    PubMed  PubMed Central  Google Scholar 

  55. Pandit A, Rai V, Sharma TR, Sharma PC, Singh NK (2011) Differentially expressed genes in sensitive and tolerant rice varieties in response to salt-stress. J Plant Biochem Biotechnol 20:149–154

    CAS  Article  Google Scholar 

  56. Passaia G, Spagnolo FL, Caverzan A, Jardim-Messeder D, Christoff AP, Gaeta ML, de Araujo Mariath JE, Margis R, Margis-Pinheiro M (2013) The mitochondrial glutathione peroxidase GPX3 is essential for H2O2 homeostasis and root and shoot development in rice. Plant Sci 208:93–101

    CAS  Article  PubMed  Google Scholar 

  57. Passam HC, Kakouriotis D (1994) The effects of osmoconditioning on the germination emergence and early plant growth of cucumber under saline conditions. Sci Hortic 57:233–240

    Article  Google Scholar 

  58. Pons R, Cornejo MJ, Sanz A (2011) Differential salinity-induced variations in the activity of H+-pumps and Na+/H+ antiporters that are involved in cytoplasm ion homeostasis as a function of genotype and tolerance level in rice cell lines. Plant Physiol Biochem 49:1399–1409

    CAS  Article  PubMed  Google Scholar 

  59. Pushpavalli R, Quealy J, Colmer TD, Turner NC, Siddique KHM, Rao MV, Vadez V (2016) Salt stress delayed flowering and reduced reproductive success of chickpea (Cicer arietinum L.), a response associated with Na+ accumulation in leaves. J Agron Crop Sci 202:125–138

    CAS  Article  Google Scholar 

  60. Sanchez DH, Siahpooh MR, Roessner U, Udvardi M, Kopka J (2008) Plant metabolomics reveals conserved and divergent metabolic responses to salt. Physiol Plant 132:209–219

    CAS  PubMed  Google Scholar 

  61. Schippers JH, Schmidt R, Wagstaff C, Jing HC (2015) Living to Die and Dying to Live: the survival strategy behind leaf senescence. Plant Physiol 169(2):914–930

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Shabala L, Zhang J, Pottosin I, Bose J, Zhu M, Fuglsang AT, Shabala S (2016) Cell-type-specific H+-ATPase activity in root tissues enables K retention and mediates acclimation of Barley (Hordeum vulgare) to salinity stress. Plant Physiol 172(4):2445–2458

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Shen W, Gómez-cadenas A, Routly EL, Ho TD, Simmonds JA, Gulick PJ (2001) The salt stress-inducible protein kinase gene, esi47, from the salt-tolerant wheatgrass Lophopyrum elongatum is involved in plant hormone signaling. Plant Physiol 125:203–213

    Article  Google Scholar 

  64. Singh J, Sharma PC, Sharma SK, Rai M (2014) Assessing the effect of salinity on the oil quality parameters of Indian mustard (Brassica juncea L. Czern & Coss) using Fourier Transform Near-Infrared Reflectance (FT-NIR) spectroscopy. Grasas Aceites 65(1):e009

    Article  Google Scholar 

  65. Soltani A, Gholipoor M, Zeinali E (2006) Seed reserve utilization and seedling growth of wheat as affected by drought and salinity. Environ Exp Bot 55:195–200

    Article  Google Scholar 

  66. Toker C, Lluch C, Tejera N, Serraj R, Siddique K (2007) Abiotic stresses. In: Yadav SS, Redden RJ, Chen W, Sharma B (eds) Chickpea breeding and management. CABI, Oxfordshire, pp 474–496

    Chapter  Google Scholar 

  67. Tripathi P, Singh PC, Mishra A, Chaudhry V, Mishra S, Tripathi RD, Nautiyal CS (2013) Trichoderma inoculation ameliorates arsenic induced phytotoxic changes in gene expression and stem anatomy of chickpea (Cicer arietinum). Ecotoxicol Environ Saf 89:8–14

    CAS  Article  PubMed  Google Scholar 

  68. Turner NC, Colmer TD, Quealy J, Pushpavalli R, Krishnamurthy L (2013) Salinity tolerance and ion accumulation in chickpea (Cicer arietinum L.) subjected to salt stress. Plant Soil 365:347–361

    CAS  Article  Google Scholar 

  69. Wang C, Xie W, Chi F, Hu W, Mao G, Sun D, Li C, Sun Y (2008) BcLTP, a novel lipid transfer protein in Brassica chinensis, may secrete and combine extracellular CaM. Plant Cell Rep 27:159–169

    CAS  Article  PubMed  Google Scholar 

  70. Wang N, Qi HK, Su GL, Yang J, Zhou H, Xu QH, Huang Q, Yan GT (2016) Genotypic variations in ion homeostasis, photochemical efficiency and antioxidant capacity adjustment to salinity in cotton (Gossypium hirsutum L.). Soil Sci Plant Nutr 62(3):240–246

    Article  Google Scholar 

  71. Weatherley PE (1950) Studies in the water relations of the cotton plant. I. The field measurement of water deficits in leaves. New Phytol 49:81–97

    Article  Google Scholar 

  72. Widodo JHP, Newbigin E, Tester M, Bacic A (2009) Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salt tolerance. J Exp Bot 60:4089–4103

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. Wu D, Cai S, Chen M, Ye L, Chen Z, Zhang H (2013) Tissue metabolic responses to salt stress in wild and cultivated barley. PLoS ONE 8:e55431

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environment 25:131–139

    CAS  Article  Google Scholar 

  75. Yoshida S, Forno DA, Cock JH, Gomez KA (1976) Laboratory manual for physiological studies of rice. International Rice Research Institute, Los Banos

    Google Scholar 

  76. Zheng J, Zhao JF, Tao YZ, Wang JH, Liu YJ, Fu JJ, Jin Y, Gao P, Zhang JP, Bai YF, Wang GY (2004) Isolation and analysis of water stress induced genes in maize seedlings by subtractive PCR and cDNA microarray. Plant Mol Biol 55:807–823

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Dr. Jitender Giri, National Institute of Plant Genome Research, New Delhi, India, for providing the facilities to carry out this study.

Author information

Affiliations

Authors

Contributions

JS conceived the project, analyzed the data and wrote the first draft and the final version of the paper. VS performed the experiments and PCS performed the critical revision of the data.

Corresponding author

Correspondence to Jogendra Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, J., Singh, V. & Sharma, P.C. Elucidating the role of osmotic, ionic and major salt responsive transcript components towards salinity tolerance in contrasting chickpea (Cicer arietinum L.) genotypes. Physiol Mol Biol Plants 24, 441–453 (2018). https://doi.org/10.1007/s12298-018-0517-4

Download citation

Keywords

  • Gene expression
  • Glycinebetaine
  • Ionic homoeostasis
  • Membrane leakage
  • Real-time PCR