Skip to main content
Log in

BcLTP, a novel lipid transfer protein in Brassica chinensis, may secrete and combine extracellular CaM

  • Physiology and Biochemistry
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Lipid transfer proteins in plants are believed to be involved in many processes of cell physiology and development. In this work, a full-length cDNA encoding a novel lipid transfer protein, designated BcLTP was isolated from Brassica chinensis. At least two copies of BcLTP are present in whole genome of B. chinensis, and its transcripts preferably accumulate in second-year organs, implying its role in reproductive growth stage. The 118 amino acid sequence deduced from a 354 bp open reading frame (ORF) shares common features with other members of plants LTPs family. A putative signal peptide at the N terminus was tested for secretion function by the yeast signal sequence trap (YSST) system, and further confirmed by vesicular and extracellular localization of YFP fusion protein. A highly conserved CaM binding site at C terminus was found and the binding properties with two representative CaM isoforms, one is convergent AtCaM2, one is divergent SCaM5, were determined by gel overlay. We found that convergent AtCaM2 prefer high concentration of Ca2+ for binding BcLTP, while SCaM5 does not depend on Ca2+ concentration too much for binding BcLTP. The lipid binding feature of BcLTP was demonstrated using florescence-marked 1-pyrenedodecanoic acid, which can be enhanced by AtCaM2 in Ca2+ dependent manner and by SCaM5 in either presence or absence of Ca2+. The collected data suggest that BcLTP may secrete and combine extracellular CaM isoforms, which in turn, facilitate lipid binding of BcLTP via Ca2+ mediated signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AtCaM2:

Arabidopsis calmodulin isoform 2

BAA:

Basic amphiphilic α-helix

BcLTP:

Brassica chinensis lipid transfer protein

ΔBcLTP :

Mature BcLTP coding sequence

CaM:

Calmodulin

DAB:

3,3′-Diaminobenzidine

IPTG:

Isoporopylthio-β-d-thiogalactoside

nWAK2 :

N-terminal WAK2

Pyr-12C:

1-Pyrenedodecanoic acid

SCaM5:

Soybean calmodulin isoform 5

YSST:

Yeast signal sequence trap

References

  • Arondel V, Vergnolle C, Cantrel C, Kader JC (2000) Lipid transfer proteins are encoded by a small multigene family in Arabidopsis thaliana. Plant Sci 157:1–12

    Article  CAS  Google Scholar 

  • Belanger KD, Wyman AJ, Sudol MN, Singla-Pareek SL, Quatrano RS (2003) A signal peptide secretion screen in Fucus distichus embryos reveals expression of glucanase, EGF domain-containing, and LRR receptor kinase-like polypeptides during asymmetric cell growth. Planta 217:931–950

    Article  PubMed  CAS  Google Scholar 

  • Cameron KD, Teece MA, Smart LB (2006) Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol 140:176–183

    Article  PubMed  CAS  Google Scholar 

  • Cheng H-C, Cheng P-T, Peng P, Lyu P-C, Sun Y-J (2004) Lipid binding in rice nonspecific lipid transfer protein-1 complexes from Oryza sativa. Protein Sci 13:2304–2315

    Article  PubMed  CAS  Google Scholar 

  • Dan V, Simon WJ, Duranti M, Croy RRD (2005) Changes in the tocacco leaf apoplast proteome in response to salt stress. Proteomics 5:737–745

    Article  CAS  Google Scholar 

  • Edqvist J, Rönnberg E, Rosenquist S, Blomqvist K, Viitanen L, Salminen TA, Nylund M, Tuuf J, Mattjus P (2004) Plants express a lipid transfer protein with high similarity to mammalian sterol carrier protein-2. J Biol Chem 279:53544–53553

    Article  PubMed  CAS  Google Scholar 

  • Gomar J, Petit MC, Sodano P, Sy D, Marion D, Kader JC, Vovelle F, Ptak M (1996) Solution structure and lipid binding of a nonspecific lipid transfer protein extracted from maize seeds. Protein Sci 5:565–577

    PubMed  CAS  Google Scholar 

  • Guerbette F, Grosbois M, Jolliot-Croquin A, Kader J-C, Zachowski A (1999) Comparison of lipid-binding and transfer properties of two lipid transfer proteins from plants. Biochemistry 38:14131–14137

    Article  PubMed  CAS  Google Scholar 

  • Guiderdoni E, Cordero MJ, Vignols F, Garcia-Garrido JM, Lescot M, Tharreau D, Meynard D, Ferrière N, Notteghem JL, Delseny M (2002) Inducibility by pathogen attack and developmental regulation of the rice Ltp1 gene. Plant Mol Biol 49:683–699

    Article  PubMed  CAS  Google Scholar 

  • Haro LD, Ferracci G, Opi S, Iborra C, Quetglas S, Miquelis R, Lévêque C, Seagar M (2004) Ca2+/calmodulin transfers the membrane-proximal lipid-binding domain of the v-SNARE synaptobrevin from cis to trans bilayers. Proc Natl Acad Sci USA 101:1578–1583

    Article  PubMed  CAS  Google Scholar 

  • He ZH, Cheeseman I, He D, Kohorn BD (1999) A cluster of five cell wall-associated receptor kinase genes, Wak1-5, are expressed in specific organs of Arabidopsis. Plant Mol Biol 39:1189–1196

    Article  PubMed  CAS  Google Scholar 

  • Heinemann B, Andersen KV, Nielsen PR, Bech LM, Poulsen FM (1996) Structure in solution of a four-helix lipid binding protein. Protein Sci 5:13–23

    Article  PubMed  CAS  Google Scholar 

  • Hincha DK, Neukamm B, Sror HA, Sieg F, Weckwarth W, Rǖckels M, Lullien-Pellerin V, Schrǒder W, Schmitt JM (2001) Cabbage cryoprotectin is a member of the nonspecific plant lipid transfer protein gene family. Plant Physiol 125:835–846

    Article  PubMed  CAS  Google Scholar 

  • Jacobs KA, Collins-Racie LA, Colbert M, Duckett M, Evans C, Golden-Fleet M, Kelleher K, Kriz R, La Vallie ER, Merberg D, Spaulding V, Stover J, Williamson MJ, McCoy JM (1999) A genetic selection for isolating cDNA clones that encode signal peptides. Methods Enzymol 303:468–479

    Article  PubMed  CAS  Google Scholar 

  • Jung HW, Kim W, Hwang BK (2003) Three pathogen-inducible genes encoding lipid transfer protein from pepper are differentially activated by pathogens, abiotic, and environmental stresses. Plant Cell Environ 26:915–928

    Article  PubMed  CAS  Google Scholar 

  • Kader JC (1996) Lipid-transfer proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 47:627–654

    Article  PubMed  CAS  Google Scholar 

  • Kader JC, Julienne M, Vergnolle C (1984) Purification and characterization of a spinach-leaf protein capable of transferring phospholipids from liposomes to mitochondria or chloroplasts. Eur J Biochem 139:411–416

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Kim JC, Lee MS, Heo WD, Seo HY, Yoon HW, Hoog JC, Lee SY, Bahk JD, Hwang I, Cho MJ (1995) Identification of a novel divergent calmodulin isoform from Soybean which has differential ability to activate calmodulin-dependent enzyme. J Biol Chem 270:21806–21812

    Article  PubMed  CAS  Google Scholar 

  • Lee JY, Min K, Cha H, Shin DH, Hwang KY, Suh SW (1998) Rice non-specific lipid transfer protein: the 1.6 Å crystal structure in the unliganded state reveals a small hydrophobic cavity. J Mol Biol 276:437–448

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Xue L, Li C, Zhang R, Ling QL (2001) Calmodulin-binding protein BP-10, a probable new member of plant nonspecific lipid transfer protein superfamily. Biochem Biophys Res Commun 285:633–638

    Article  PubMed  CAS  Google Scholar 

  • Ma LG, Sun DY (1997) The effects of extracellular calmodulin on initiation of Hippeastrum rutithum pollen germination and tube growth. Planta 202:336–340

    Article  CAS  Google Scholar 

  • Maldonado AM, Doerner P, Dixon RA, Lamb CJ, Cameron RK (2002) A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419:399–403

    Article  PubMed  CAS  Google Scholar 

  • Mao GH, Hou LX, Ding CB, Cui SJ, Sun DY (2005) Characterization of a cDNA coding for an extracellular calmodulin-binding protein from suspension-cultured cells of Angelica dahurica. Planta 222:428–437

    Article  PubMed  CAS  Google Scholar 

  • Masuta C, Furuno M, Tanaka H, Yamada M, Koiwai A (1992) Molecular cloning of a cDNA clone for tobacco lipid transfer protein and expression of the functional protein in Escherichia coli. FEBS Lett 311:119–123

    Article  PubMed  CAS  Google Scholar 

  • Nieuwland J, Feron R, Huisman BA, Fasolino A, Hilbers CW, Derksen J, Mariani C (2005) Lipid transfer proteins enhance cell wall extension. The Plant Cell 17:2009–2019

    Article  PubMed  CAS  Google Scholar 

  • Park SY, Lord EM (2003) Expression studies of SCA in lily and confirmation of its role in pollen tube adhesion. Plant Mol Biol 51:183–189

    Article  PubMed  CAS  Google Scholar 

  • Park CJ, Shin R, Park JM, Lee GJ, You JS, Paek KH (2002) Induction of pepper cDNA encoding a lipid transfer protein during the resistance response to tobacco mosaic virus. Plant Mol Biol 48:243–254

    Article  PubMed  CAS  Google Scholar 

  • Pearce RS, Houlston CE, Atherton KM, Rixon JE, Harrison P, Hughes MA, Dunn MA (1998) Localization of expression of three cold-induced genes, blt101, blt4.9, and blt14, in different tissues of the crown and developing leaves of cold-acclimated cultivated barley. Plant Physiol 117:787–795

    Article  PubMed  CAS  Google Scholar 

  • Pyee J, Kolattukudy PE (1995) The gene for the major cuticular wax-associated protein and three homologous genes from broccoli (Brassica oleracea) and their expression patterns. Plant J 7:49–59

    Article  PubMed  CAS  Google Scholar 

  • Pyee J, Yu H, Kolattukudy PE (1994) Identification of a lipid transfer protein as the major protein in the surface wax of broccoli leaves. Arch Biochem Biophys 331:460–468

    Article  Google Scholar 

  • Qi Q, Rao EY, Wang Z, Liu H, Ling QL, Li CF (2004) Cloning and expression of a cDNA encoding CaMBP-10 and CaM binding activity analysis. Chin J Biochem Mol Biol 20(4):451–456

    CAS  Google Scholar 

  • Sambrook J, Fritsch FF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Segura A, Moreno M, Garcia-Olmedo F (1993) Purification and antipathogenic activity of lipid transfer proteins (LTPs) from the leaves of Arabidopsis and spinach. FEBS Lett 332: 243–246

    Article  PubMed  CAS  Google Scholar 

  • Sohal AK, Pallas JA, Jenkins GI (1999) The promoter of a Brassica napus lipid transfer protein gene is active in a range of tissues and stimulated by light and viral infection in transgenic Arabidopsis. Plant Mol Biol 41:75–87

    Article  PubMed  CAS  Google Scholar 

  • Sun DY, Li HB, Cheng G (1994) Extracellular calmodulin accelerates the proliferation of suspensioin-cultured cells of Angelica dahurica. Plant Sci 99:1–8

    Article  CAS  Google Scholar 

  • Sun DY, Bian YQ, Zhao BH, Zhao LY, Yu X, Duan S (1995) The effects of extracellular calmodulin on cell wall regeneration and cell division of protoplasts. Plant Cell Physiol 36(1):133–138

    CAS  Google Scholar 

  • Sun DY, Tang WQ, Ma LG (2001) Extracelluar calmodulin: a polypeptide signal in plants? Sci China 44:450–460

    Google Scholar 

  • Thoma S, Kaneko Y, Somerville C (1993) A non-specific lipid transfer protein from Arabidopsis is a cell wall protein. Plant J 3:427–436

    Article  PubMed  CAS  Google Scholar 

  • Thoma S, Hecht U, Kippers A, Botella J, Vries SD, Somerville C (1994) Tissue-specific expression of a gene encoding a cell wall-localized lipid transfer protein from Arabidopsis. Plant Physiol 105:35

    Article  PubMed  CAS  Google Scholar 

  • Torres-Schumann S, Godoy JA, Pintor-Toro JA (1992) A probable lipid transfer protein gene is induced by NaCl in stems of tomato plants. Plant Mol Biol 18:749–757

    Article  PubMed  CAS  Google Scholar 

  • Treviňo MB, O’Connell MA (1998) Three drought-responsive members of the nonspecific lipid-transfer protein gene family in Lycopersicon pennellii show different development patterns of expression. Plant Physiol 116:1461–1468

    Article  PubMed  Google Scholar 

  • Wang Z, Xie W, Chi F, Li C (2005) Identification of non-specific lipid transfer protein-1 as a calmodulin-binding protein in Arabidopsis. FEBS Lett 579:683–687

    Article  CAS  Google Scholar 

  • Xie WQ, Wang Z, Li ZP, Huang KZ, Li CF (2005) The study of calmodulin binding domain in CaMBP-10. Ordinary General Assembly and Congress of the Chinese Society of Biochemistry and Molecular Biology. P97

  • Xie WQ, Zhao Li-Q, Bai W-Y, Li Z-P, Zhao Y-L, Li C-F (2006) The effects of calmodulin on the lipid-binding activity of CaM-binding protein-10 and maize non-specific lipid transfer protein. J Plant Physiol Mol Biol 32(6):679–684

    CAS  Google Scholar 

  • Ye ZH, Sun DY, Guo JF (1989) Preliminary study on wheat cell wall calmodulin. Chin Sci Bull 34:158–161

    CAS  Google Scholar 

  • Yubero-Serrano EM, Moyano E, Medina-Escobar N, Muňoz-Blanco J, Caballero JL (2003) Identification of a strawberry gene encoding a non-specific lipid transfer protein that responds to ABA, wounding and cold stress. J Exp Bot 54:1865–1877

    Article  PubMed  CAS  Google Scholar 

  • Zachowski A, Guerbette F, Grosbois M, Jolliot-Croquin A, Kader J-C (1998) Characterization of acyl binding by a plant lipid-transfer protein. Eur J Biochem 257:443–448

    Article  PubMed  CAS  Google Scholar 

  • Zhou HL, Ma LG, Liu M, Mao GH, Sun DY (2001) Secretion of calmodulin in transgenic SCaM-GFP tobacco. Acta Botanica Sinica 43:1300–1302

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. R.E Zielinski for providing plasmid ACaM2 cDNA, Prof. M. J. Cho for providing SCaM5 cDNA, Professor X. M. Chen for providing pAVA321 vector, Dr. K. A. Jacob for providing YSST system. This work was supported by Nation Science Foundation of China (No. 90208004 and 30370733), National Key Basic Research Special Fund of China grants (2006CB100700 and 2006CB910600).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cuifeng Li or Ying Sun.

Additional information

Communicated by Y. Lu.

BcLTP (accession number in Genbank: EF216852).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Xie, W., Chi, F. et al. BcLTP, a novel lipid transfer protein in Brassica chinensis, may secrete and combine extracellular CaM. Plant Cell Rep 27, 159–169 (2008). https://doi.org/10.1007/s00299-007-0434-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-007-0434-4

Keywords

Navigation