Skip to main content
Log in

Electronic structure engineering of single atomic sites by plasmon-induced hot electrons for highly efficient and selective photocatalysis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Single atom (SA) catalysts have achieved great success on highly selective heterogeneous catalysis due to their abundant and homogeneous active sites. The electronic structures of these active sites, restrained by their localized coordination environments, significantly determine their catalytic performances, which are difficult to manipulate. Here, we investigated the effect of localized surface plasmon resonance (LSPR) on engineering the electronic structures of single atomic sites. Typically, core-shell structures consisted of Au core and transition metal SAs loaded N-doped carbon (CN) shell were constructed, namely Au@M-SA/CN (M = Ni, Fe, and Co). It was demonstrated that plasmon-induced hot electrons originated from Au were directionally injected to the M-SAs under visible light irradiation, which significantly changed their electronic structures and meanwhile facilitated improved overall charge separation efficiency. The as-prepared Au@Ni-SA/CN exhibited highly efficient and selective photocatalytic CO2 reduction to CO performance, which is 20.8, 17.5, and 6.9 times those of Au nanoparticles, Au@CN, and Ni-SA/CN, respectively. Complementary spectroscopy analysis and theoretical calculations confirmed that the plasmon enhanced Ni-SA/CN sites featured increased charge density for efficient intermediate activation, contributing to the superb photocatalytic performance. The work provides a new insight on plasmon and atomic site engineering for efficient and selective catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, X.; Pereira-Hernández, X. I.; Chen, Y. Z.; Xu, J.; Zhao, J. K.; Pao, C. W.; Fang, C. Y.; Zeng, J.; Wang, Y.; Gates, B. C. et al. Functional CeOx nanoglues for robust atomically dispersed catalysts. Nature 2022, 611, 284–288.

    Article  CAS  PubMed  Google Scholar 

  2. Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res. 2024, 17, 3261–3301.

    Article  CAS  Google Scholar 

  3. Shen, J.; Wang, D. S. How to select heterogeneous CO2 reduction electrocatalyst. Nano Res. Energy 2024, 3, e9120096.

    Article  Google Scholar 

  4. Zhou, S. Q.; Shang, L.; Zhao, Y. X.; Shi, R.; Waterhouse, G. I. N.; Huang, Y. C.; Zheng, L. R.; Zhang, T. R. Pd single-atom catalysts on nitrogen-doped graphene for the highly selective photothermal hydrogenation of acetylene to ethylene. Adv. Mater. 2019, 31, 1900509.

    Article  Google Scholar 

  5. Zhu, C. X.; Yang, J. R.; Zhang, J. W.; Wang, X. Q.; Gao, Y.; Wang, D. S.; Pan, H. G. Single-atom materials: The application in energy conversion. Interdiscip. Mater. 2024, 3, 74–86.

    Article  CAS  Google Scholar 

  6. Chen, S. H.; Ye, C. L.; Wang, Z. W.; Li, P.; Jiang, W. J.; Zhuang, Z. C.; Zhu, J. X.; Zheng, X. B.; Zaman, S.; Ou, H. H. et al. Selective CO2 reduction to ethylene mediated by adaptive small-molecule engineering of copper-based electrocatalysts. Angew. Chem., Int. Ed. 2023, 62, e202315621.

    Article  CAS  Google Scholar 

  7. Gong, X. Y.; Li, D. C.; Zhang, Q.; Wang, W. Q.; Tian, Z. B.; Su, G.; Huang, M. H.; Wang, G. H. Cobalt single atoms supported on monolithic carbon with a hollow-on-hollow architecture for efficient transfer hydrogenations. Nano Res. 2023, 16, 11358–11365.

    Article  CAS  Google Scholar 

  8. Sun, K.; Dong, J. C.; Sun, H.; Wang, X. D.; Fang, J. J.; Zhuang, Z. B.; Tian, S. B.; Sun, X. M. Co(CN)3 catalysts with well-defined coordination structure for the oxygen reduction reaction. Nat. Catal. 2023, 6, 1164–1173.

    Article  CAS  Google Scholar 

  9. Ning, S. B.; Ou, H. H.; Li, Y. G.; Lv, C. C.; Wang, S. F.; Wang, D. S.; Ye, J. H. Co0–Coδ+ interface double-site-mediated C–C coupling for the photothermal conversion of CO2 into light olefins. Angew. Chem., Int. Ed. 2023, 62, e202302253.

    Article  CAS  Google Scholar 

  10. Ma, R. Z.; Li, Q. H.; Yan, J.; Tao, Y.; Hu, S. Y.; Liu, D. H.; Gong, J. X.; Xiong, Y. Thermodynamically controllable synthesis of ZIF-8 exposing different facets and their applications in single atom catalytic oxygen reduction reactions. Nano Res. 2023, 16, 9618–9624.

    Article  CAS  Google Scholar 

  11. Wang, G.; Wu, Y.; Li, Z. J.; Lou, Z. Z.; Chen, Q. Q.; Li, Y. F.; Wang, D. S.; Mao, J. J. Engineering a copper single-atom electron bridge to achieve efficient photocatalytic CO2 conversion. Angew. Chem., Int. Ed. 2023, 62, e202218460.

    Article  CAS  Google Scholar 

  12. Wu, X.; Zhang, H. B.; Zuo, S. W.; Dong, J. C.; Li, Y.; Zhang, J.; Han, Y. Engineering the coordination sphere of isolated active sites to explore the intrinsic activity in single-atom catalysts. Nano-Micro Lett. 2021, 13, 136.

    Article  CAS  Google Scholar 

  13. Zhou, H.; Wu, Y. E. The next decade of single-atom materials. Sci. Bull. 2023, 68, 465–468.

    Article  CAS  Google Scholar 

  14. Wang, G.; Chen, Z.; Wang, T.; Wang, D. S.; Mao, J. J. P and Cu dual sites on graphitic carbon nitride for photocatalytic CO2 reduction to hydrocarbon fuels with high C2H6 evolution. Angew. Chem., Int. Ed. 2022, 61, e202210789.

    Article  CAS  Google Scholar 

  15. Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res. 2024, 17, 18–38.

    Article  CAS  Google Scholar 

  16. Gao, Y.; Wang, E. P.; Zheng, Y. Z.; Zhou, J.; Sun, Z. M. Hexagonal MBenes-supported single atom as electrocatalysts for the nitrogen reduction reaction. Energy Mater. Adv. 2023, 4, 0039.

    Article  Google Scholar 

  17. Hu, S.; Qiao, P. Z.; Yi, X. L.; Lei, Y. M.; Hu, H. L.; Ye, J. H.; Wang, D. F. Selective photocatalytic reduction of CO2 to CO mediated by silver single atoms anchored on tubular carbon nitride. Angew. Chem., Int. Ed. 2023, 62, e202304585.

    Article  CAS  Google Scholar 

  18. Wang, P.; Zhang, R. M.; Wang, K.; Liu, Y. J.; Zhang, L. S.; Wang, X. J.; Li, H. F.; He, Y.; Liu, Z. M. Simultaneously constructing asymmetrically coordinated cobalt single atoms and cobalt nanoclusters via a fresh potassium hydroxide clipping strategy toward efficient alkaline oxygen reduction reaction. Energy Mater. Adv. 2023, 4, 0042.

    Article  CAS  Google Scholar 

  19. Wang, G.; Huang, R.; Zhang, J. W.; Mao, J. J.; Wang, D. S.; Li, Y. D. Synergistic modulation of the separation of photo-generated carriers via engineering of dual atomic sites for promoting photocatalytic performance. Adv. Mater. 2021, 33, 2105904.

    Article  CAS  Google Scholar 

  20. Wang, G.; He, C. T.; Huang, R.; Mao, J. J.; Wang, D. S.; Li, Y. D. Photoinduction of Cu single atoms decorated on UiO-66-NH2 for enhanced photocatalytic reduction of CO2 to liquid fuels. J. Am. Chem. Soc. 2022, 142, 19339–19345.

    Article  Google Scholar 

  21. Jia, C. C.; Li, X. X.; Xin, N.; Gong, Y.; Guan, J. X.; Meng, L. N.; Meng, S.; Guo, X. F. Interface-engineered plasmonics in metal/semiconductor heterostructures. Adv. Energy Mater. 2016, 6, 1600431.

    Article  Google Scholar 

  22. Zhao, J.; Xue, S.; Ji, R. R.; Li, B.; Li, J. H. Localized surface Plasmon resonance for enhanced electrocatalysis. Chem. Soc. Rev. 2021, 50, 12070–12097.

    Article  CAS  PubMed  Google Scholar 

  23. Li, K. H.; Chen, X. Y.; Su, D.; Song, Y. J.; Zhou, H. L.; Liu, Z. G.; Xia, P.; Zhang, X. Y. Design strategies toward plasmon-enhanced 2-dimensional material photodetectors. Adv. Devices Instrum. 2023, 4, 0017.

    Article  Google Scholar 

  24. Linic, S.; Aslam, U.; Boerigter, C.; Morabito, M. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 2015, 14, 567–576.

    Article  CAS  PubMed  Google Scholar 

  25. Lee, Y. K.; Jung, C. H.; Park, J.; Seo, H.; Somorjai, G. A.; Park, J. Y. Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes. Nano Lett. 2011, 11, 4251–4255.

    Article  CAS  PubMed  Google Scholar 

  26. Wu, K.; Chen, J.; McBride, J. R.; Lian, T. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 2015, 349, 632–635.

    Article  CAS  PubMed  Google Scholar 

  27. Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics 2014, 8, 95–103.

    Article  CAS  Google Scholar 

  28. Wan, X. D.; Pan, Y.; Xu, Y. J.; Liu, J.; Chen, H. L.; Pan, R. R.; Zhao, Y. Z.; Su, P. W.; Li, Y. M.; Zhang, X. M. et al. Ultralong lifetime of plasmon-excited electrons realized in nonepitaxial/epitaxial Au@CdS/CsPbBr3 triple-heteronanocrystals. Adv. Mater. 2023, 35, 2207555.

    Article  CAS  Google Scholar 

  29. Du, R. Z.; Li, X. Y.; Li, Y.; Li, Y. X.; Hou, T. L.; Li, Y. M.; Qiao, C.; Zhang, J. T. Cation exchange synthesis of aliovalent doped InP QDs and their ZnSexS1−x shell coating for enhanced fluorescence properties. J. Phys. Chem. Lett. 2023, 14, 670–676.

    Article  CAS  PubMed  Google Scholar 

  30. Hou, T. L.; Li, X. Y.; Zhang, X. M.; Cai, R. S.; Wang, Y. C.; Chen, A. K.; Gu, H. F.; Su, M. Y.; Li, S. Y.; Li, Q. Z. et al. Atomic Au3Cu palisade interlayer in core@shell nanostructures for efficient Kirkendall effect mediation. Nano Lett. 2024, 24, 2719–2726.

    Article  CAS  PubMed  Google Scholar 

  31. Jiao, L.; Zhu, J. T.; Zhang, Y.; Yang, W. J.; Zhou, S. Y.; Li, A. W.; Xie, C. F.; Zheng, X. S.; Zhou, W.; Yu, S. H. et al. Non-bonding interaction of neighboring Fe and Ni single-atom pairs on MOF-derived N-doped carbon for enhanced CO2 electroreduction. J. Am. Chem. Soc. 2021, 143, 19417–19424.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, Y.; Jiao, L.; Yang, W. J.; Xie, C. F.; Jiang, H. L. Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 7607–7611.

    Article  CAS  Google Scholar 

  33. Zhang, W.; Liu, D.; Liu, T.; Ding, C. L.; Chen, T.; Li, Y. M.; Liu, X. K.; Wang, L.; Li, C. L.; He, J. F. et al. Coordinately unsaturated nickel single atom electrocatalyst for efficient CO2 conversion. Nano Res. 2023, 16, 10873–10880.

    Article  CAS  Google Scholar 

  34. Han, J. T.; Xue, Z. H.; Zhang, K.; Wang, H. H.; Li, X. H.; Chen, J. S. Atomically dispersed Ni-based anti-coking catalysts for methanol dehydrogenation in a fixed-bed reactor. ACS Catal. 2020, 10, 12569–12574.

    Article  CAS  Google Scholar 

  35. Han, A. J.; Chen, W. X.; Zhang, S. L.; Zhang, M. L.; Han, Y. H.; Zhang, J.; Ji, S. F.; Zheng, L. R.; Wang, Y.; Gu, L. et al. A polymer encapsulation strategy to synthesize porous nitrogen-doped carbon-nanosphere-supported metal isolated-single-atomic-site catalysts. Adv. Mater. 2018, 30, 1706508.

    Article  Google Scholar 

  36. Zhang, M. L.; Wang, Y. G.; Chen, W. X.; Dong, J. C.; Zheng, L. R.; Luo, J.; Wan, J. W.; Tian, S. B.; Cheong, W. C.; Wang, D. S. et al. Metal (hydr)oxides@polymer core-shell strategy to metal single-atom materials. J. Am. Chem. Soc. 2017, 139, 10976–10979.

    Article  CAS  PubMed  Google Scholar 

  37. Feng, C. Y.; Wu, Z. P.; Huang, K. W.; Ye, J. H.; Zhang, H. B. Surface modification of 2D photocatalysts for solar energy conversion. Adv. Mater. 2022, 34, 2200180.

    Article  CAS  Google Scholar 

  38. Xiong, W. F.; Li, H. F.; Wang, H. M.; Yi, J. D.; You, H. H.; Zhang, S. Y.; Hou, Y.; Cao, M. N.; Zhang, T.; Cao, R. Hollow mesoporous carbon sphere Loaded Ni-N4 single-atom: Support structure study for CO2 electrocatalytic reduction catalyst. Small 2020, 16, 2003943.

    Article  CAS  Google Scholar 

  39. Chen, J. Y.; Li, H.; Fan, C.; Meng, Q. W.; Tang, Y. W.; Qiu, X. Y.; Fu, G. T.; Ma, T. Y. Dual single-atomic Ni-N4 and Fe-N4 sites constructing Janus hollow graphene for selective oxygen electrocatalysis. Adv. Mater. 2020, 32, 2003134.

    Article  CAS  Google Scholar 

  40. Zhao, C. M.; Dai, X. Y.; Yao, T.; Chen, W. X.; Wang, X. Q.; Wang, J.; Yang, J.; Wei, S. Q.; Wu, Y. E.; Li, Y. D. Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2. J. Am. Chem. Soc. 2017, 139, 8078–8081.

    Article  CAS  PubMed  Google Scholar 

  41. Chen, P. Z.; Zhou, T. P.; Xing, L. L.; Xu, K.; Tong, Y.; Xie, H.; Zhang, L. D.; Yan, W. S.; Chu, W. S.; Wu, C. Z. et al. Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem., Int. Ed. 2017, 56, 610–614.

    Article  CAS  Google Scholar 

  42. Chen, P. Z.; Zhang, N.; Wang, S. B.; Zhou, T. P.; Tong, Y.; Ao, C. C.; Yan, W. S.; Zhang, L. D.; Chu, W. S.; Wu, C. Z. et al. Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis. Proc. Natl. Acad. Sci. USA 2019, 116, 6635–6640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jiang, Z. L.; Sun, W. M.; Shang, H. S.; Chen, W. X.; Sun, T. T.; Li, H. J.; Dong, J. C.; Zhou, J.; Li, Z.; Wang, Y. et al. Atomic interface effect of a single atom copper catalyst for enhanced oxygen reduction reactions. Energy Environ. Sci. 2019, 12, 3508–3514.

    Article  CAS  Google Scholar 

  44. Tong, Y.; Chen, P. Z.; Zhou, T. P.; Xu, K.; Chu, W. S.; Wu, C. Z.; Xie, Y. A Bifunctional Hybrid electrocatalyst for oxygen reduction and evolution: Cobalt oxide nanoparticles strongly coupled to B,N-decorated graphene. Angew. Chem., Int. Ed. 2017, 56, 7121–7125.

    Article  CAS  Google Scholar 

  45. Zu, X. L.; Li, X. D.; Liu, W.; Sun, Y. F.; Xu, J. Q.; Yao, T.; Yan, W. S.; Gao, S.; Wang, C. M.; Wei, S. Q. et al. Efficient and robust carbon dioxide electroreduction enabled by Atomically dispersed Snδ+ sites. Adv. Mater. 2019, 31, 1808135.

    Article  Google Scholar 

  46. Wang, H. Z.; Gao, Y. Y.; Liu, J.; Li, X. Y.; Ji, M. W.; Zhang, E. H.; Cheng, X. Y.; Xu, M.; Liu, J. J.; Rong, H. P. et al. Efficient plasmonic Au/CdSe nanodumbbell for photoelectrochemical hydrogen generation beyond visible region. Adv. Energy Mater. 2019, 9, 1803889.

    Article  Google Scholar 

  47. Shoaib, A.; Ji, M. W.; Qian, H. M.; Liu, J. J.; Xu, M.; Zhang, J. T. Noble metal nanoclusters and their in situ calcination to nanocrystals: Precise control of their size and interface with TiO2 nanosheets and their versatile catalysis applications. Nano Res. 2016, 9, 1763–1774.

    Article  CAS  Google Scholar 

  48. Feng, J. W.; Liu, J.; Cheng, X. Y.; Liu, J. J.; Xu, M.; Zhang, J. T. Hydrothermal cation exchange enabled gradual evolution of Au@ZnS-AgAuS yolk–shell nanocrystals and their visible light photocatalytic applications. Adv. Sci. 2018, 5, 1700376.

    Article  Google Scholar 

  49. Zhang, L. S.; Ding, N.; Lou, L. C.; Iwasaki, K.; Wu, H. J.; Luo, Y. H.; Li, D. M.; Nakata, K.; Fujishima, A.; Meng, Q. B. Localized surface plasmon resonance enhanced photocatalytic hydrogen evolution via Pt@Au NRs/C3N4 nanotubes under visible-light irradiation. Adv. Funct. Mater. 2019, 29, 1806774.

    Article  Google Scholar 

  50. Yu, G. Y.; Qian, J.; Zhang, P.; Zhang, B.; Zhang, W. X.; Yan, W. F.; Liu, G. Collective excitation of plasmon-coupled Au-nanochain boosts photocatalytic hydrogen evolution of semiconductor. Nat. Commun. 2019, 10, 4912.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Li, X. Y.; Zhuang, Z. C.; Chai, J.; Shao, R. W.; Wang, J. H.; Jiang, Z. L.; Zhu, S. W.; Gu, H. F.; Zhang, J.; Ma, Z. T. et al. Atomically strained metal sites for highly efficient and selective photooxidation. Nano Lett. 2023, 23, 2905–2914.

    Article  CAS  PubMed  Google Scholar 

  52. Huang, W. H.; Bo, T. T.; Zuo, S. W.; Wang, Y. Z.; Chen, J. M.; Ould-Chikh, S.; Li, Y.; Zhou, W.; Zhang, J.; Zhang, H. B. Surface decorated Ni sites for superior photocatalytic hydrogen production. SusMat 2022, 2, 466–475.

    Article  CAS  Google Scholar 

  53. Wang, M.; Shen, M.; Jin, X. X.; Tian, J. J.; Li, M. L.; Zhou, Y. J.; Zhang, L. X.; Li, Y. S.; Shi, J. L. Oxygen vacancy generation and stabilization in CeO2−x by Cu introduction with improved CO2 photocatalytic reduction activity. ACS Catal. 2019, 9, 4573–4581.

    Article  CAS  Google Scholar 

  54. Jiao, X. C.; Li, X. D.; Jin, X. Y.; Sun, Y. F.; Xu, J. Q.; Liang, L.; Ju, H. X.; Zhu, J. F.; Pan, Y.; Yan, W. S. et al. Partially oxidized SnS2 atomic layers achieving efficient visible-light-driven CO2 reduction. J. Am. Chem. Soc. 2017, 139, 18044–18051.

    Article  CAS  PubMed  Google Scholar 

  55. Sheng, J. P.; He, Y.; Li, J. Y.; Yuan, C. W.; Huang, H. W.; Wang, S. Y.; Sun, Y. J.; Wang, Z. M.; Dong, F. Identification of halogen-associated active sites on bismuth-based perovskite quantum dots for efficient and selective CO2-to-CO photoreduction. ACS Nano 2020, 14, 13103–13114.

    Article  CAS  PubMed  Google Scholar 

  56. Ban, C. G.; Duan, Y. Y.; Wang, Y.; Ma, J. P.; Wang, K. W.; Meng, J. Z.; Liu, X.; Wang, C.; Han, X. D.; Cao, G. Z. et al. Isotype heterojunction-boosted CO2 photoreduction to CO. Nano-Micro Lett. 2022, 14, 74.

    Article  CAS  Google Scholar 

  57. Zhang, X. F.; Huang, W. H.; Yu, L.; García-Melchor, M.; Wang, D. S.; Zhi, L. J.; Zhang, H. B. Enabling heterogeneous catalysis to achieve carbon neutrality: Directional catalytic conversion of CO2 into carboxylic acids. Carbon Energy 2024, 6, e362.

    Article  CAS  Google Scholar 

  58. Yang, H.; Hu, Y. W.; Chen, J. J.; Balogun, M. S.; Fang, P. P.; Zhang, S. Q.; Chen, J.; Tong, Y. X. Intermediates adsorption engineering of CO2 electroreduction reaction in highly selective heterostructure Cu-based electrocatalysts for CO production. Adv. Energy Mater. 2019, 9, 1901396.

    Article  Google Scholar 

  59. Jiang, J. W.; Wang, X. F.; Guo, H. Enhanced interfacial charge transfer/separation by LSPR-induced defective semiconductor toward high CO2RR performance. Small 2023, 19, 2301280.

    Article  CAS  Google Scholar 

  60. Wei, Y. Z.; You, F. F.; Zhao, D. C.; Wan, J. W.; Gu, L.; Wang, D. Heterogeneous hollow multi-shelled structures with amorphous-crystalline outer-shells for sequential photoreduction of CO2. Angew. Chem., Int. Ed. 2022, 61, e202212049.

    Article  CAS  Google Scholar 

  61. Ling, G. Z. S.; Oh, V. B. Y.; Haw, C. Y.; Tan, L. L.; Ong, W. J. g-C3N4 photocatalysts: Utilizing electron–hole pairs for boosted redox capability in water splitting. Energy Mater. Adv. 2023, 4, 0038.

    Article  CAS  Google Scholar 

  62. Yin, H. B.; Dong, F.; Wang, D. S.; Li, J. H. Coupling Cu single atoms and phase junction for photocatalytic CO2 reduction with 100% CO selectivity. ACS Catal. 2022, 12, 14096–14105.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22375020, 52272186, and 22105116) and Beijing Institute of Technology Research Fund Program for Young Scholars. We acknowledge the 1W1B station for XAFS measurement in the Beijing Synchrotron Radiation Facility (BSRF) and BL10B and BL12B in the National Synchrotron Radiation Laboratory (NSRL) for use of their instruments. We thank Analysis and Testing Center, Beijing Institute of Technology, for assistance in HRTEM and STEM-EDS experiments. We also thank Dr. Leining Zhang for her help on theoretical analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinyuan Li or Jiatao Zhang.

Electronic Supplementary Material

12274_2024_6706_MOESM1_ESM.pdf

Electronic structure engineering of single atomic sites by plasmon-induced hot electrons for highly efficient and selective photocatalysis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Li, X., Chen, A. et al. Electronic structure engineering of single atomic sites by plasmon-induced hot electrons for highly efficient and selective photocatalysis. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6706-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6706-2

Keywords

Navigation