Skip to main content
Log in

Noble metal nanoclusters and their in situ calcination to nanocrystals: Precise control of their size and interface with TiO2 nanosheets and their versatile catalysis applications

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this work, we present a new versatile strategy to prepare noble metal (Au, Ag and Cu) nanoclusters on TiO2 nanosheets in large scales with exposed (001) facets with controlled size, crystalline interface, and loading amount. By precise in situ calcination, the metal (M = Au, Ag, and Cu) nanocrystals with controllable size and better crystalline interface with the TiO2 support have been prepared. The potential application of the as-prepared Au, Ag, and Cu nanoclusters on TiO2 nanosheets as potential heterogeneous catalysts for organic synthesis, such as catalytic reduction of 4-nitrophenol to 4-aminophenol, has been demonstrated. After calcination, Au, Ag, and Cu nanocrystals were found to be proficient cocatalysts for photocatalytic H2 evolution, particularly the Au cocatalyst. Based on precise high-resolution transmission electron microscopy (HRTEM) and inductively coupled plasma optical emission spectrometry (ICP-OES) analyses, the flexible control of their size and loading amount as well as their intimate contact with the TiO2 nanosheet enhanced the photocatalytic H2 evolution activity and the sensitivity of the photocurrent response of the film. Furthermore, this aqueous-directed synthesis of metal nanoclusters on a support will generate further interest in the field of nanocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Valden, M.; Lai, X.; Goodman, D. W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 1998, 281, 1647–1650.

    Article  Google Scholar 

  2. Häkkinen, H.; Moseler, M.; Landman, U. Bonding in Cu, Ag, and Au clusters: Relativistic effects, trends, and surprises. Phys. Rev. Lett. 2002, 89, 033401.

    Article  Google Scholar 

  3. Chen, S. F.; Li, J. P.; Qian, K.; Xu, W. P.; Lu, Y.; Huang, W. X.; Yu, S. H. Large scale photochemical synthesis of M@TiO2 nanocomposites (M = Ag, Pd, Au, Pt) and their optical properties, CO oxidation performance, and antibacterial effect. Nano Res. 2010, 3, 244–255.

    Article  Google Scholar 

  4. DuChene, J. S.; Sweeny, B. C.; Johnston-Peck, A. C.; Su, D.; Stach, E. A.; Wei, W. D. Prolonged hot electron dynamics in plasmonic-metal/semiconductor heterostructures with implications for solar photocatalysis. Angew. Chem., Int. Ed. 2014, 53, 7887–7891.

    Article  Google Scholar 

  5. Chen, M. S.; Goodman, D. W. Catalytically active gold: From nanoparticles to ultrathin films. Acc. Chem. Res. 2006, 39, 739–746.

    Article  Google Scholar 

  6. Bell, A. T. The impact of nanoscience on heterogeneous catalysis. Science 2003, 299, 1688–1691.

    Article  Google Scholar 

  7. Du, M. M.; Sun, D. H.; Yang, H. W.; Huang, J. L.; Jing, X. L.; Odoom-Wubah, T.; Wang, H. T.; Jia, L. S.; Li, Q. B. Influence of Au particle size on Au/TiO2 catalysts for CO oxidation. J. Phys. Chem. C 2014, 118, 19150–19157.

    Article  Google Scholar 

  8. Corma, A.; Garcia, H. Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev. 2008, 37, 2096–2126.

    Article  Google Scholar 

  9. Li, G.; Jin, R. C. Atomically precise gold nanoclusters as new model catalysts. Acc. Chem. Res. 2013, 46, 1749–1758.

    Article  Google Scholar 

  10. Claus, P.; Brückner, A.; Mohr, C.; Hofmeister, H. Supported gold nanoparticles from quantum dot to mesoscopic size scale: Effect of electronic and structural properties on catalytic hydrogenation of conjugated functional groups. J. Am. Chem. Soc. 2000, 122, 11430–11439.

    Article  Google Scholar 

  11. Qi, D. Y.; Yan, X. F.; Wang, L. Z.; Zhang, J. L. Plasmonfree SERS self-monitoring of catalysis reaction on Au nanoclusters/TiO2 photonic microarray. Chem. Commun. 2015, 51, 8813–8816.

    Article  Google Scholar 

  12. Lin, Z. J.; Wang, X. H.; Liu, J.; Tian, Z. Y.; Dai, L. C.; He, B. B.; Han, C.; Wu, Y. Q.; Zeng, Z. G.; Hu, Z. Y. On the role of localized surface plasmon resonance in UV-Vis light irradiated Au/TiO2 photocatalysis systems: Pros and cons. Nanoscale 2015, 7, 4114–4123.

    Article  Google Scholar 

  13. Zhang, X.; Liu, Y.; Lee, S. T.; Yang, S. H.; Kang, Z. H. Coupling surface plasmon resonance of gold nanoparticles with slow-photon-effect of TiO2 photonic crystals for synergistically enhanced photoelectrochemical water splitting. Energy Environ. Sci. 2014, 7, 1409–1419.

    Article  Google Scholar 

  14. Yang, J. H.; Wang, D.; Han, H. X.; Li, C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 2013, 46, 1900–1909.

    Article  Google Scholar 

  15. Shen, J. F.; Shi, M.; Yan, B.; Ma, H. W.; Li, N.; Ye, M. X. Ionic liquid-assisted one-step hydrothermal synthesis of TiO2-reduced graphene oxide composites. Nano Res. 2011, 4, 795–806.

    Article  Google Scholar 

  16. Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

    Article  Google Scholar 

  17. Liu, Y. C.; Gu, Y. S.; Yan, X. Q.; Kang, Z.; Lu, S. N.; Sun, Y. H.; Zhang, Y. Design of sandwich-structured ZnO/ZnS/Au photoanode for enhanced efficiency of photoelectrochemical water splitting. Nano Res. 2015, 8, 2891–2900.

    Article  Google Scholar 

  18. Cortright, R. D.; Davda, R. R.; Dumesic, J. A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 2002, 418, 964–967.

    Article  Google Scholar 

  19. Sajan, C. P.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J. G.; Cao, S. W. TiO2 nanosheets with exposed {001} facets for photocatalytic applications. Nano Res. 2016, 9, 3–27.

    Article  Google Scholar 

  20. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

    Article  Google Scholar 

  21. Han, X. G.; Kuang, Q.; Jin, M. S.; Xie, Z. X.; Zheng, L. S. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 2009, 131, 3152–3153.

    Article  Google Scholar 

  22. Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638–641.

    Article  Google Scholar 

  23. Xing, M.-Y.; Yang, B.-X.; Yu, H.; Tian, B.-Z.; Bagwasi, S.; Zhang, J.-L.; Gong, X.-Q. Enhanced photocatalysis by Au nanoparticle loading on TiO2 single-crystal (001) and (110) facets. J. Phys. Chem. Lett. 2013, 4, 3910–3917.

    Article  Google Scholar 

  24. Chen, X. B.; Mao, S. S. Titanium dioxide nanomaterials: Synthesis, properties, modifications and applications. Chem. Rev. 2007, 107, 2891–2959.

    Article  Google Scholar 

  25. Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K. A review and recent developments in photocatalytic watersplitting using TiO2 for hydrogen production. Renew. Sustain. Energ. Rev. 2007, 11, 401–425.

    Article  Google Scholar 

  26. Osterloh, F. E. Inorganic materials as catalysts for photochemical splitting of water. Chem. Mater. 2008, 20, 35–54.

    Article  Google Scholar 

  27. Ismail, A. A.; Bahnemann, D. W. Photochemical splitting of water for hydrogen production by photocatalysis: A review. Sol. Energy Mater. Sol. Cells 2014, 128, 85–101.

    Article  Google Scholar 

  28. Zhang, Z. Y.; Wang, Z.; Cao, S.-W.; Xue, C. Au/Pt nano-particle-decorated TiO2 nanofibers with plasmon-enhanced photocatalytic activities for solar-to-fuel conversion. J. Phys. Chem. C 2013, 117, 25939–25947.

    Article  Google Scholar 

  29. Subramanian, V.; Wolf, E.; Kamat, P. V. Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films? J. Phys. Chem. B 2001, 105, 11439–11446.

    Article  Google Scholar 

  30. Pearson, A.; Zheng, H. D.; Kalantar-Zadeh, K.; Bhargava, S. K.; Bansal, V. Decoration of TiO2 nanotubes with metal nanoparticles using polyoxometalate as a UV-switchable reducing agent for enhanced visible and solar light photocatalysis. Langmuir 2012, 28, 14470–14475.

    Article  Google Scholar 

  31. Yu, X. L.; Shavel, A.; An, X. Q.; Luo, Z. S.; Ibáñez, M.; Cabot, A. Cu2ZnSnS4-Pt and Cu2ZnSnS4-Au heterostructured nanoparticles for photocatalytic water splitting and pollutant degradation. J. Am. Chem. Soc. 2014, 136, 9236–9239.

    Article  Google Scholar 

  32. Kochuveedu, S. T.; Jang, Y. H.; Kim, D. H. A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications. Chem. Soc. Rev. 2013, 42, 8467–8493.

    Article  Google Scholar 

  33. Long, R.; Prezhdo, O. V. Instantaneous generation of chargeseparated state on TiO2 surface sensitized with plasmonic nanoparticles. J. Am. Chem. Soc. 2014, 136, 4343–4354.

    Article  Google Scholar 

  34. Chen, Y. S.; Choi, H.; Kamat, P. V. Metal-cluster-sensitized solar cells. A new class of thiolated gold sensitizers delivering efficiency greater than 2%. J. Am. Chem. Soc. 2013, 135, 8822–8825.

    Article  Google Scholar 

  35. Xiao, F. X. Layer-by-layer self-assembly construction of highly ordered metal-TiO2 nanotube arrays heterostructures (M/TNTs, M = Au, Ag, Pt) with tunable catalytic activities. J. Phys. Chem. C 2012, 116, 16487–16498.

    Article  Google Scholar 

  36. Delannoy, L.; Thrimurthulu, G.; Reddy, P. S.; Méthivier, C.; Nelayah, J.; Reddy, B. M.; Ricolleau, C.; Louis, C. Selective hydrogenation of butadiene over TiO2 supported copper, gold and gold-copper catalysts prepared by deposition-precipitation. Phys. Chem. Chem. Phys. 2014, 16, 26514–26527.

    Article  Google Scholar 

  37. Kisch, H.; Bahnemann, D. Best practice in photocatalysis: Comparing rates or apparent quantum yields? J. Phys. Chem. Lett. 2015, 6, 1907–1910.

    Article  Google Scholar 

  38. Zhang, J. Y.; Wang, Y. H.; Jin, J.; Zhang, J.; Lin, Z.; Huang, F.; Yu, J. G. Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core/shell CdS/g-C3N4 nanowires. ACS Appl. Mater. Interfaces 2013, 5, 10317–10324.

    Article  Google Scholar 

  39. Li, Q.; Guo, B. D.; Yu, J. G.; Ran, J. R.; Zhang, B. H.; Yan, H. J.; Gong, J. R. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J. Am. Chem. Soc. 2011, 133, 10878–10884.

    Article  Google Scholar 

  40. Boehm, H. P. Functional groups on the surfaces of solids. Angew. Chem., Int. Ed. 1966, 5, 533–544.

    Article  Google Scholar 

  41. Sun, Y. G. Controlled synthesis of colloidal silver nanoparticles in organic solutions: Empirical rules for nucleation engineering. Chem. Soc. Rev. 2013, 42, 2497–2511.

    Article  Google Scholar 

  42. Liu, Y. Z.; Sun, Y. G. Electron beam induced evolution in Au, Ag, and interfaced heterogeneous Au/Ag nanoparticles. Nanoscale 2015, 7, 13687–13693.

    Article  Google Scholar 

  43. Ding, D. W.; Liu, K.; He, S. N.; Gao, C. B.; Yin, Y. D. Ligand-exchange assisted formation of Au/TiO2 schottky contact for visible-light photocatalysis. Nano Lett. 2014, 14, 6731–6736.

    Article  Google Scholar 

  44. Zhao, Q.; Ji, M. W.; Qian, H. M.; Dai, B. S.; Weng, L.; Gui, J.; Zhang, J. T.; Ouyang, M.; Zhu, H. S. Controlling structural symmetry of a hybrid nanostructure and its effect on efficient photocatalytic hydrogen evolution. Adv. Mater. 2014, 26, 1387–1392.

    Article  Google Scholar 

  45. Bai, S.; Jiang, J.; Zhang, Q.; Xiong, Y. J. Steering charge kinetics in photocatalysis: Intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev. 2015, 44, 2893–2939.

    Article  Google Scholar 

  46. Zheng, D. J.; Pang, X. C.; Wang, M. Y.; He, Y. J.; Lin, C. J.; Lin, Z. Q. Unconventional route to hairy plasmonic/ semiconductor core/shell nanoparticles with precisely controlled dimensions and their use in solar energy conversion. Chem. Mater. 2015, 27, 5271–5278.

    Article  Google Scholar 

  47. Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911–921.

    Article  Google Scholar 

  48. Pu, Y. C.; Wang, G. M.; Chang, K. D.; Ling, Y. C.; Lin, Y. K.; Fitzmorris, B. C.; Liu, C. M.; Lu, X. H.; Tong, Y. X.; Zhang, J. Z. et al. Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett. 2013, 13, 3817–3823.

    Article  Google Scholar 

  49. Buriak, J. M.; Kamat, P. V.; Schanze, K. S. Best practices for reporting on heterogeneous photocatalysis. ACS Appl. Mater. Interfaces 2014, 6, 11815–11816.

    Article  Google Scholar 

  50. Subramanian, V.; Wolf, E. E.; Kamat, P. V. Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. J. Am. Chem. Soc. 2004, 126, 4943–4950.

    Article  Google Scholar 

  51. Dang, X. N.; Qi, J. F.; Klug, M. T.; Chen, P. Y.; Yun, D. S.; Fang, N. X.; Hammond, P. T.; Belcher, A. M. Tunable localized surface plasmon-enabled broadband light-harvesting enhancement for high-efficiency panchromatic dye-sensitized solar cells. Nano Lett. 2013, 13, 637–642.

    Article  Google Scholar 

  52. Seh, Z. W.; Liu, S. H.; Low, M.; Zhang, S. Y.; Liu, Z. L.; Mlayah, A.; Han, M. Y. Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Adv. Mater. 2012, 24, 2310–2314.

    Article  Google Scholar 

  53. Liu, L. P.; Wang, G. M.; Li, Y.; Li, Y. D.; Zhang, J. Z. CdSe quantum dot-sensitized Au/TiO2 hybrid mesoporous films and their enhanced photoelectrochemical performance. Nano Res. 2011, 4, 249–258.

    Article  Google Scholar 

  54. Chen, G.; Zhao, Y.; Shang, L.; Waterhouse, G. I. N.; Kang, X.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Recent advances in the synthesis, characterization and application of Zn+-containing heterogeneous catalysts. Adv. Sci. 2016, 1500424.

    Google Scholar 

  55. Lu, Q. P.; Lu, Z. D.; Lu, Y. Z.; Lv, L. F.; Ning, Y.; Yu, H. X.; Hou, Y. B.; Yin, Y. D. Photocatalytic synthesis and photovoltaic application of Ag-TiO2 nanorod composites. Nano Lett. 2013, 13, 5698–5702.

    Article  Google Scholar 

  56. Bian, Z. F.; Tachikawa, T.; Zhang, P.; Fujitsuka, M.; Majima, T. Au/TiO2 superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity. J. Am. Chem. Soc. 2014, 136, 458–465.

    Article  Google Scholar 

  57. Chen, H. J.; Liu, G.; Wang, L. Z. Switched photocurrent direction in Au/TiO2 bilayer thin films. Sci. Rep. 2015, 5, 10852.

    Article  Google Scholar 

  58. Lee, J.; Mubeen, S.; Ji, X. L.; Stucky, G. D.; Moskovits, M. Plasmonic photoanodes for solar water splitting with visible light. Nano Lett. 2012, 12, 5014–5019.

    Article  Google Scholar 

  59. Kamat, P. V. Manipulation of charge transfer across semiconductor interface. A criterion that cannot be ignored in photocatalyst design. J. Phys. Chem. Lett. 2012, 3, 663–672.

    Article  Google Scholar 

  60. Waterhouse, G. I. N.; Wahab, A. K.; Al-Oufi, M.; Jovic, V.; Anjum, D. H.; Sun-Waterhouse, D.; Llorca, J.; Idriss, H. Hydrogen production by tuning the photonic band gap with the electronic band gap of TiO2. Sci. Rep. 2013, 3, 2849.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiatao Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoaib, A., Ji, M., Qian, H. et al. Noble metal nanoclusters and their in situ calcination to nanocrystals: Precise control of their size and interface with TiO2 nanosheets and their versatile catalysis applications. Nano Res. 9, 1763–1774 (2016). https://doi.org/10.1007/s12274-016-1069-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1069-y

Keywords

Navigation