Skip to main content
Log in

The defect-modulated UiO-66(Ce) MOFs for enhancing photocatalytic selective organic oxidations

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Defect engineering in metal organic frameworks (MOFs) has captured significant attention in the field of photocatalysis. A series of UiO-66(Ce) (UiO = University of Oslo) MOFs with different contents of missing-linker defects have been developed for the photocatalytic selective oxidation of benzylamine (BA) and thioanisole (TA) under visible light. The introduction of missing-linker defects promotes the formation of unsaturated Ce sites with a high Ce3+ content. It also generates a high concentration of oxygen vacancies. In situ Fourier transform infrared spectroscopy (FTIR) results revealed that BA and TA molecules were activated on coordinatively unsaturated Ce sites via the H–N···Ce and the C–S···Ce interactions, respectively. Simulated in situ electron paramagnetic resonance (EPR) data indicate that O2 activation and reduction occur at coordinatively unsaturated Ce3+ sites to form ·O2. This is accelerated by the Ce3+/Ce4+ redox cycle associated with the photogenerated electrons. The corresponding photogenerated holes are involved in the deprotonation of the activated BA and TA. The most active sample exhibits 98.4% and 95.5% conversion rates for BA and TA oxidation. Mechanisms for the molecular activation are proposed at the molecular level.

Graphical abstract

摘要

MOFs的缺陷工程在光催化领域引起了广泛的关注。该工作制备了一系列不同含量的配体缺陷的UiO-66(Ce) MOFs,用于在可见光下光催化选择性氧化苄胺(BA)和茴香硫醚(TA)。配体缺陷的引入促进了高Ce3+含量的不饱和Ce位点的形成,并且产生更多的氧空位。原位FTIR结果表明,BA和TA分子分别通过H-N···Ce和C-S···Ce相互作用在配位不饱和Ce位点上被吸附活化。模拟原位EPR数据表明,O2的活化和还原发生在配位不饱和Ce3+位点,形成·O2-自由基。通过光生电子协同的Ce3+/Ce4+氧化还原循环进一步促进其形成。光生空穴参与了活化的BA和TA的去质子化过程。最佳的催化剂展现了98.4%的BA转化率和95.5%的TA转化率。最后,在分子水平上提出了分子活化的机制。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

References

  1. Mekhilef S, Saidur R, Safari A. A review on solar energy use in industries. Renew Sust Energ Rev. 2011;15(4):1777. https://doi.org/10.1016/j.rser.2010.12.018.

    Article  Google Scholar 

  2. Tao P, Ni G, Song C, Shang W, Wu J, Zhu J, Chen G, Deng T. Solar-driven interfacial evaporation. Nat Energy. 2018;3:1031. https://doi.org/10.1038/s41560-018-0260-7.

    Article  Google Scholar 

  3. Sun L, Su H, Liu Q, Hu J, Wang L, Tang H. A review on photocatalytic systems capable of synchronously utilizing photogenerated electrons and holes. Rare Met. 2022;41(7):2387. https://doi.org/10.1007/s12598-022-01966-7.

    Article  CAS  Google Scholar 

  4. Bie C, Wang L, Yu J. Challenges for photocatalytic overall water splitting. Chem. 2022;8(6):1567. https://doi.org/10.1016/j.chempr.2022.04.013.

    Article  CAS  Google Scholar 

  5. Shi Y, Li J, Mao C, Liu S, Wang X, Liu X, Zhao S, Li X, Huang Y, Zhang L. Van Der Waals gap-rich BiOCl atomic layers realizing efficient, pure-water CO2-to-CO photocatalysis. Nat Commun. 2021;12:5923. https://doi.org/10.1038/s41467-021-26219-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Huang H, Song H, Kou J, Lu C, Ye J. Atomic-level insights into surface engineering of semiconductors for photocatalytic CO2 reduction. J Energy Chem. 2022;67:309. https://doi.org/10.1016/j.jechem.2021.10.015.

    Article  CAS  Google Scholar 

  7. Xia P, Pan X, Jiang S, Yu J, He B, Ismail PM, Bai W, Yang J, Yang L, Zhang H, Cheng M, Li H, Zhang Q, Xiao C, Xie Y. Designing a redox heterojunction for photocatalytic “overall nitrogen fixation” under mild conditions. Adv Mater. 2022;34(28):2200563. https://doi.org/10.1002/adma.202200563.

    Article  CAS  Google Scholar 

  8. Zhou A, Yang J, Zhu X, Zhu X, Liu J, Zhong K, Chen H, Chu J, Du Y, Song Y, Qian J, Li H, Xu H. Self-assembly construction of NiCo LDH/ultrathin g-C3N4 nanosheets photocatalyst for enhanced CO2 reduction and charge separation mechanism study. Rare Met. 2022;41(6):2118. https://doi.org/10.1007/s12598-022-01960-z.

    Article  CAS  Google Scholar 

  9. Lang X, Chen X, Zhao J. Heterogeneous visible light photocatalysis for selective organic transformations. Chem Soc Rev. 2014;43:473. https://doi.org/10.1039/C3CS60188A.

    Article  CAS  PubMed  Google Scholar 

  10. Liu C, Jin T, Qian J, Xu X, Meng X, Chen Z. Synthesis and photocatalytic property of CuS-Ag/g-C3N4. Chin J Rare Met. 2023;47(8):1104. https://doi.org/10.13373/j.cnki.cjrm.XY21070028.

    Article  Google Scholar 

  11. Shen L, Liang R, Wu L. Strategies for engineering metal-organic frameworks as efficient photocatalysts. Chin J Catal. 2015;36(12):2071. https://doi.org/10.1016/S1872-2067(15)60984-6.

    Article  CAS  Google Scholar 

  12. Zhao H, Xing Z, Su S, Song S, Xu T, Li Z, Zhou W. Recent advances in metal organic frame photocatalysts for environment and energy applications. Appl Mater Today. 2020;21:100821. https://doi.org/10.1016/j.apmt.2020.100821.

    Article  Google Scholar 

  13. Liu S, Zhang C, Sun Y, Chen Q, He L, Zhang K, Zhang J, Liu B, Chen L. Design of metal-organic framework-based photocatalysts for hydrogen generation. Coordin Chem Rev. 2020;413:213266. https://doi.org/10.1016/j.ccr.2020.213266.

    Article  CAS  Google Scholar 

  14. Wang Y, Liu X, Wang X, Cao M. Metal-organic frameworks based photocatalysts: architecture strategies for efficient solar energy conversion. Chem Eng J. 2021;419:129459. https://doi.org/10.1016/j.cej.2021.129459.

    Article  CAS  Google Scholar 

  15. Hao M, Li Z. Visible light–initiated synergistic/cascade reactions over metal–organic frameworks. Sol RRL. 2021;5(2):2000454. https://doi.org/10.1002/solr.202000454.

    Article  CAS  Google Scholar 

  16. Alvaro M, Carbonell E, Ferrer B, Llabrés i Xamena FX, Garcia H. Semiconductor behavior of a metal-organic framework (MOF). Chem Eur J. 2007;13(18):5106. https://doi.org/10.1002/chem.200601003.

    Article  CAS  PubMed  Google Scholar 

  17. Mendez JA, Vong YM, Bueno J. Cerium and other rare earth salts as corrosion inhibitors—a review. Prot Met Phys Chem Surf. 2022;58:801. https://doi.org/10.1134/S2070205122040141.

    Article  CAS  Google Scholar 

  18. Zhang Y, Zeng X, Jiang X, Chen H, Long Z. Ce-based UiO-66 metal-organic frameworks as a new redox catalyst for atomic spectrometric determination of Se(VI) and colorimetric sensing of Hg(II). Microchem J. 2019;149:103967. https://doi.org/10.1016/j.microc.2019.103967.

    Article  CAS  Google Scholar 

  19. Yassin JM, Taddesse AM, Sanchez-S’anchez M. Room temperature synthesis of high-quality Ce(IV)-based MOFs in water. Micropor Mesopor Mat. 2021;324:111303. https://doi.org/10.1016/j.micromeso.2021.111303.

    Article  CAS  Google Scholar 

  20. Wen M, Kuwahara Y, Mori K, Zhang D, Li H, Yamashita H. Synthesis of Ce ions doped metal–organic framework for promoting catalytic H2 production from ammonia borane under visible light irradiation. J Mater Chem A. 2015;3:14134. https://doi.org/10.1039/c5ta02320c.

    Article  CAS  Google Scholar 

  21. Zhang K, Chu F, Hu Y, Huang X, Zhao G, Wang G. Ce-doped MIL-125-NH2 coupled Ce4+/Ce3+ and Ti4+/Ti3+ redox mediators for thermo-enhanced photocatalytic oxidative desulfurization. Chin Chem Lett. 2023;34(5):107766. https://doi.org/10.1016/j.cclet.2022.107766.

    Article  CAS  Google Scholar 

  22. Lammert M, Wharmby MT, Smolders S, Bueken B, Alexandra L, Lomachenko Kirill A, Vos DD, Stock N. Cerium-based metal organic frameworks with UiO-66 architecture: synthesis, properties and redox catalytic activity. Chem Commun. 2015;51:12578. https://doi.org/10.1039/c5cc02606g.

    Article  CAS  Google Scholar 

  23. Hendrickx K, Joos JJ, Vos AD, Poelman D, Smet PF, Speybroeck VV, Voort PVD, Lejaeghere K. Exploring lanthanide doping in UiO-66: a combined experimental and computational study of the electronic structure. Inorg Chem. 2018;57(9):5463. https://doi.org/10.1021/acs.inorgchem.8b00425.

    Article  CAS  PubMed  Google Scholar 

  24. Wu X, Gagliardi L, Truhlar DG. Cerium metal−organic framework for photocatalysis. J Am Chem Soc. 2018;140(25):7904. https://doi.org/10.1021/jacs.8b03613.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Y, Chen H, Pan Y, Zeng X, Jiang X, Long Z, Hou X. Cerium-based UiO-66 metal–organic frameworks explored as efficient redox catalysts: titanium incorporation and generation of abundant oxygen vacancies. Chem Commun. 2019;55:13959. https://doi.org/10.1039/C9CC06562H.

    Article  CAS  Google Scholar 

  26. Qiu X, Zhu Y, Zhang X, Zhang Y, Menisa LT, Xia C, Liu S, Tang Z. Cerium-based metal–organic frameworks with UiO architecture for visible light-induced aerobic oxidation of benzyl alcohol. Sol RRL. 2020;4(8):1900449. https://doi.org/10.1002/solr.201900449.

    Article  CAS  Google Scholar 

  27. Zhao D, Cai C. Cerium-based UiO-66 metal-organic framework for synergistic dye adsorption and photodegradation: a discussion of the mechanism. Dyes Pigm. 2021;185(8):108957. https://doi.org/10.1016/j.dyepig.2020.108957.

    Article  CAS  Google Scholar 

  28. Chen H, Liu C, Guo W, Wang Z, Shi Y, Yu Y, Wu L. Functionalized UiO-66(Ce) for photocatalytic organic transformation: the role of active sites modulated by ligand functionalization. Catal Sci Technol. 2022;12:1812. https://doi.org/10.1039/d1cy02344f.

    Article  CAS  Google Scholar 

  29. Vos AD, Hendrickx K, Voort PVD, Speybroeck VV, Lejaeghere K. Missing linkers: an alternative pathway to UiO-66 electronic structure engineering. Chem Mater. 2017;29(7):3006. https://doi.org/10.1021/acs.chemmater.6b05444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Taddei M, Schukraft GM, Warwick MEA, Tiana D, McPherson MJ, Jones DR, Petit C. Band gap modulation in zirconium-based metal–organic frameworks by defect engineering. J Mater Chem A. 2019;7:23781. https://doi.org/10.1039/c9ta05216j.

    Article  CAS  Google Scholar 

  31. Xue Z, Liu K, Liu Q, Li Y, Li M, Su C, Ogiwara N, Kobayashi H, Kitagawa H, Liu M, Li G. Missing-linker metal-organic frameworks for oxygen evolution reaction. Nat Commun. 2019;10:5048. https://doi.org/10.1038/s41467-019-13051-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang L, Guo C, Chen T, Guo Y, Hassan A, Kou Y, Guo C, Wang J. Effects of different defective linkers on the photocatalytic properties of Cu-BTC for overall water decomposition. Appl Catal B Environ. 2022;303:120888. https://doi.org/10.1016/j.apcatb.2021.120888.

    Article  CAS  Google Scholar 

  33. Dissegna S, Epp K, Heinz WR, Kieslich G, Fischer RA. Defective metal-organic frameworks. Adv Mater. 2018;30(37):1704501. https://doi.org/10.1002/adma.201704501.

    Article  CAS  Google Scholar 

  34. Xiang W, Zhang Y, Chen Y, Liu C, Tu X. Synthesis, characterization and application of defective metal–organic frameworks: current status and perspectives. J Mater Chem A. 2020;8:21526. https://doi.org/10.1039/d0ta08009h.

    Article  CAS  Google Scholar 

  35. Gao W, Li X, Zhang X, Su S, Luo S, Huang R, Jing Y, Luo M. Photocatalytic nitrogen fixation of metal–organic frameworks (MOFs) excited by ultraviolet light: Insights into the nitrogen fixation mechanism of missing metal cluster or linker defects. Nanoscale. 2021;13:7801. https://doi.org/10.1039/d1nr00697e.

    Article  CAS  PubMed  Google Scholar 

  36. Wang S, Gu X, Wang X, Zhang X, Dao X, Cheng X, Ma J, Sun W. Defect-engineering of Zr(IV)-based metal-organic frameworks for regulating CO2 photoreduction. Chem Eng J. 2022;429:132157. https://doi.org/10.1016/j.cej.2021.132157.

    Article  CAS  Google Scholar 

  37. Ma X, Wang L, Zhang Q, Jiang H. Switching on the photocatalysis of metal–organic frameworks by engineering structural defects. Angew Chem Int Ed. 2019;58(35):12175. https://doi.org/10.1002/anie.201907074.

    Article  CAS  Google Scholar 

  38. Guo B, Cheng X, Tang Y, Guo W, Deng S, Wu L, Fu X. Dehydrated UiO-66(SH)2: the Zr–O cluster and its photocatalytic role mimicking the biological nitrogen fixation. Angew Chem Int Ed. 2022;16(13):e202117244. https://doi.org/10.1002/anie.202117244.

    Article  CAS  Google Scholar 

  39. Vermoortele F, Bueken B, Le BG, Van de Voorde B, Vandichel M, Houthoofd K, Vimont A, Daturi M, Waroquier M, Van SV, Kirschhock C, De Vos DE. Synthesis modulation as a tool to increase the catalytic activity of metal−organic frameworks: The unique case of UiO-66(Zr). J Am Chem Soc. 2013;135(31):11465. https://doi.org/10.1021/ja405078u.

    Article  CAS  PubMed  Google Scholar 

  40. Shearer GC, Chavan S, Bordiga S, Svelle S, Olsbye U, Lillerud KP. Defect engineering: tuning the porosity and composition of the metal−organic framework UiO-66 via modulated synthesis. Chem Mater. 2016;28(11):3749. https://doi.org/10.1021/acs.chemmater.6b00602.

    Article  CAS  Google Scholar 

  41. Sheng W, Shi J, Hao H, Li X, Lang X. Polyimide-TiO2 hybrid photocatalysis: visible light-promoted selective aerobic oxidation of amines. Chem Eng J. 2020;379:122399. https://doi.org/10.1016/j.cej.2019.122399.

    Article  CAS  Google Scholar 

  42. Xu C, Liu H, Li D, Su J, Jiang H. Direct evidence of charge separation in a metal–organic framework: efficient and selective photocatalytic oxidative coupling of amines via charge and energy transfer. Chem Sci. 2018;9:3152. https://doi.org/10.1039/c7sc05296k.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu C, Ren Y, Wang Z, Shi Y, Guo B, Yu Y, Wu L. Flowerlike BiOCl nanospheres fabricated by an in situ self-assembly strategy for efficiently enhancing photocatalysis. J Colloid Interf Sci. 2022;607:423. https://doi.org/10.1016/j.jcis.2021.09.002.

    Article  CAS  Google Scholar 

  44. Lang X, Zhao J, Chen X. Visible-light-induced photoredox catalysis of dye-sensitized titanium dioxide: selective aerobic oxidation of organic sulfides. Angew Chem Int Ed. 2016;55(15):4697. https://doi.org/10.1002/anie.201600405.

    Article  CAS  Google Scholar 

  45. Li X, Ma X, Zhang F, Dong X, Lang X. Selective photocatalytic formation of sulfoxides by aerobic oxidation of sulfides over conjugated microporous polymers with thiazolo[5,4-d] thiazole linkage. Appl Catal B Environ. 2021;298:120514. https://doi.org/10.1016/j.apcatb.2021.120514.

    Article  CAS  Google Scholar 

  46. Zou X, Zhang D, Luan T, Li Q, Li L, Li P, Zhao Y. Incorporating photochromic triphenylamine into a zirconium−organic framework for highly effective photocatalytic aerobic oxidation of sulfides. ACS Appl Mater Interfaces. 2021;13(17):20137. https://doi.org/10.1021/acsami.1c03083.

    Article  CAS  PubMed  Google Scholar 

  47. Lan X, Li Q, Zhang Y, Li Q, Ricardez-Sandoval L, Bai G. Engineering donor-acceptor conjugated organic polymers with boron nitride to enhance photocatalytic performance towards visible-light-driven metal free selective oxidation of sulfides. Appl Catal B Environ. 2020;277:119274. https://doi.org/10.1016/j.apcatb.2020.119274.

    Article  CAS  Google Scholar 

  48. Zheng X, Qi S, Cao Y, Shen L, Au C, Jiang L. Morphology evolution of acetic acid-modulated MIL-53(Fe) for efficient selective oxidation of H2S. Chin J Catal. 2021;42(2):279. https://doi.org/10.1016/S1872-2067(20)63625-7.

    Article  CAS  Google Scholar 

  49. Valenzano L, Civalleri B, Chavan S, Bordiga S, Nilsen MH, Jakobsen S, Lillerud KP, Lamberti C. Disclosing the complex structure of UiO-66 metal organic framework: a synergic combination of experiment and theory. Chem Mater. 2011;23(7):1700. https://doi.org/10.1021/cm1022882.

    Article  CAS  Google Scholar 

  50. Wißmann G, Schaate A, Lilienthal S, Bremer I, Schneider AM, Peter B. Modulated synthesis of Zr-fumarate MOF. Micropor Mesopor Mat. 2012;152:64. https://doi.org/10.1016/j.micromeso.2011.12.010.

    Article  CAS  Google Scholar 

  51. Schaate A, Roy P, Godt A, Lippke J, Waltz F, Wiebcke M, Behrens P. Modulated synthesis of Zr-based metal–organic frameworks: From nano to single crystals. Chem Eur J. 2011;17(24):6643. https://doi.org/10.1002/chem.201003211.

    Article  CAS  PubMed  Google Scholar 

  52. Shearer GC, Chavan S, Ethiraj J, Vitillo JG, Svelle S, Olsbye U, Lamberti C, Bordiga S, Lillerud KP. Tuned to perfection: ironing out the defects in metal–organic framework UiO-66. Chem Mater. 2014;26(14):4068. https://doi.org/10.1021/cm501859p.

    Article  CAS  Google Scholar 

  53. Wang T, Tao X, Yi X, Qiu G, Yun Y, Li B. Charge separation and molecule activation promoted by Pd/MIL-125-NH2 hybrid structures for selective oxidation reactions. Catal Sci Technol. 2020;10:138. https://doi.org/10.1039/c9cy01690b.

    Article  CAS  Google Scholar 

  54. Wang Y, Li L, Dai P, Yan L, Cao L, Gu X, Zhao X. Missing-node directed synthesis of hierarchical pores on a zirconium metal–organic framework with tunable porosity and enhanced surface acidity via a microdroplet flow reaction. J Mater Chem A. 2017;5:22372. https://doi.org/10.1039/c7ta06060b.

    Article  CAS  Google Scholar 

  55. Xu R, Ji Q, Zhao P, Jian M, Xiang C, Hu C, Zhang G, Tang C, Liu R, Zhang X, Qu J. Hierarchically porous UiO-66 with tunable mesopores and oxygen vacancies for enhanced arsenic removal. J Mater Chem A. 2020;8:7870. https://doi.org/10.1039/c9ta13747e.

    Article  CAS  Google Scholar 

  56. Sunil J, Narayana C, Kumari G, Jayaramulu K. Raman spectroscopy, an ideal tool for studying the physical properties and applications of metal–organic frameworks (MOFs). Chem Soc Rev. 2023;52:3397. https://doi.org/10.1039/d2cs01004f.

    Article  CAS  PubMed  Google Scholar 

  57. Liu C, Liu Y, Shi Y, Wang Z, Guo W, Bi J, Wu L. Au nanoparticles-anchored defective metal–organic frameworks for photocatalytic transformation of amines to imines under visible light. J Colloid Interf Sci. 2023;631:154. https://doi.org/10.1016/j.jcis.2022.11.042.

    Article  CAS  Google Scholar 

  58. Beche E, Charvin P, Perarnau D, Abanades S, Flamant G. Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz). Surf Interface Anal. 2008;40:264. https://doi.org/10.1002/sia.2686.

    Article  CAS  Google Scholar 

  59. Ishikawa A, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K. Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ ≤ 650 nm). J Am Chem Soc. 2002;124(45):13547. https://doi.org/10.1021/ja0269643.

    Article  CAS  PubMed  Google Scholar 

  60. Wu L, Yu JC, Fu X. Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation. J Mol Catal A Chem. 2006;244(1–2):25. https://doi.org/10.1016/j.molcata.2005.08.047.

    Article  CAS  Google Scholar 

  61. Li H, Qin F, Yang Z, Cui X, Wang J, Zhang L. New reaction pathway induced by plasmon for selective benzyl alcohol oxidation on BiOCl possessing oxygen vacancies. J Am Chem Soc. 2017;139(9):3513. https://doi.org/10.1021/jacs.6b12850.

    Article  CAS  PubMed  Google Scholar 

  62. Preda G, Migani A, Neyman KM, Bromley ST, Illas F, Pacchioni G. Formation of superoxide anions on ceria nanoparticles by interaction of molecular oxygen with Ce3+ sites. J Phys Chem C. 2011;115(13):5817. https://doi.org/10.1021/jp111147y.

    Article  CAS  Google Scholar 

  63. Zou W, Liu X, Xue C, Zhou X, Yu H, Fan P, Ji H. Enhancement of the visible-light absorption and charge mobility in a zinc porphyrin polymer/g-C3N4 heterojunction for promoting the oxidative coupling of amines. Appl Catal B Environ. 2021;285:119863. https://doi.org/10.1016/j.apcatb.2020.119863.

    Article  CAS  Google Scholar 

  64. Mottley C, Mason RP. Sulfur-centered radical formation from the antioxidant dihydrolipoic acid. J Biol Chem. 2001;276(46):42677. https://doi.org/10.1074/jbc.m104889200.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 22272026 and 22272028) and the 111 Project (No. D16008). Jinhong Bi thanks the Youth Talent Support Program of Fujian Province (No. 00387077).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-Hong Bi or Ling Wu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3598 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Shi, YZ., Chen, Q. et al. The defect-modulated UiO-66(Ce) MOFs for enhancing photocatalytic selective organic oxidations. Rare Met. (2024). https://doi.org/10.1007/s12598-024-02693-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12598-024-02693-x

Keywords

Navigation