Skip to main content
Log in

Heterobimetallic [NiCo] integration in a hydrogenase mimic for boosting light-driven hydrogen evolution in CaTiO3

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Light-drive hydrogen production using titanium-based perovskite is one sustainable way to reduce current reliance on fossil fuels, but its wide applications are still limited by high electron–hole recombination and sluggish surface reaction. Thus, the developments for low-cost and highly efficient co-catalysts remain urgent. Inspired by natural [NiFe]-hydrogenase active center structure, a hydrogenase-mimic, NiCo2S4 nanozyme was synthesized, and subsequently decorated onto the CaTiO3 to catalyze the hydrogen evolution reaction (HER). Among the following test, CaTiO3 with a 15% loading of NiCo2S4 nanozyme exhibited the highest HER rate of 307.76 µmol·g−1·h−1, which is 60 times higher than that of the CaTiO3 alone. The results reveal that NiCo2S4 not only significantly increased the charge separation efficiency of the photogenerated carriers, but also substantively lowered the HER activation energy. Mechanism studies show that NiCo2S4 readily splits H2O by forming the Ni(OH)-Co intermediate and only Ni in the bimetallic center alters the oxidation state during the HER process in a manner analogous to the [NiFe]-hydrogenase. In contrast to the often-expensive synthetic catalysts that rely on rare elements such as ruthenium and platinum, this study shows a promising way to develop the nature-inspired cocatalysts to enhance the photocatalysts’ HER performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

    Article  CAS  PubMed  Google Scholar 

  2. Yang, H. C.; Cao, R. Y.; Sun, P. X.; Deng, X. L.; Zhang, S. W.; Xu, X. J. Highly dispersed and noble metal-free MPX (M = Ni, Co, Fe) coupled with g-C3N4 nanosheets as 0D/2D photocatalysts for hydrogen evolution. Appl. Surf. Sci. 2018, 458, 893–902.

    Article  CAS  Google Scholar 

  3. Ou, H. H.; Qian, Y. P.; Yuan, L. T.; Li, H.; Zhang, L. D.; Chen, S. H.; Zhou, M.; Yang, G. D.; Wang, D. S.; Wang, Y. G. Spatial position regulation of Cu single atom site realizes efficient nanozyme photocatalytic bactericidal activity. Adv. Mater. 2023, 35, 2305077.

    Article  CAS  Google Scholar 

  4. Chen, K. H.; Xiao, J. D.; Hisatomi, T.; Domen, K. Transition-metal (oxy)nitride photocatalysts for water splitting. Chem. Sci. 2023, 14, 9248–9257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang, Y.; Zhou, C. Y.; Wang, W. J.; Xiong, W. P.; Zeng, G. M.; Huang, D. L.; Zhang, C.; Song, B.; Xue, W. J.; Li, X. P. et al. Recent advances in application of transition metal phosphides for photocatalytic hydrogen production. Chem. Eng. J. 2021, 405, 126547.

    Article  CAS  Google Scholar 

  6. Ou, H. H.; Li, G. S.; Ren, W.; Pan, B. J.; Luo, G. H.; Hu, Z. F.; Wang, D. S.; Li, Y. D. Atomically dispersed Au-assisted C-C coupling on red phosphorus for CO2 photoreduction to C2H6. J. Am. Chem. Soc. 2022, 144, 22075–22082.

    Article  CAS  PubMed  Google Scholar 

  7. Mengting, Z.; Kurniawan, T. A.; Duan, L.; Song, Y. H.; Hermanowicz, S. W.; Othman, M. H. D. Advances in BiOX-based ternary photocatalysts for water technology and energy storage applications: Research trends, challenges, solutions, and ways forward. Rev. Environ. Sci. Bio/Technol. 2022, 21, 331–370.

    Article  Google Scholar 

  8. Zhu, S. C.; Xiao, F. X. Transition metal chalcogenides quantum dots: Emerging building blocks toward solar-to-hydrogen conversion. ACS Catal. 2023, 13, 7269–7309.

    Article  CAS  Google Scholar 

  9. Passi, M.; Pal, B. A review on CaTiO3 photocatalyst: Activity enhancement methods and photocatalytic applications. Powder Technol. 2021, 388, 274–304.

    Article  CAS  Google Scholar 

  10. Ning, S. B.; Ou, H. H.; Li, Y. G.; Lv, C. C.; Wang, S. F.; Wang, D. S.; Ye, J. H. Co0-Coδ+ interface double-site-mediated C-C coupling for the photothermal conversion of CO2 into light olefins. Angew. Chem., Int. Ed. 2023, 62, e202302253.

    Article  CAS  Google Scholar 

  11. Gong, X. J.; Chong, B.; Xia, M. Y.; Li, H.; Ou, H. H.; Yang, G. D. Fluorinated phosphonium ionic liquid boosts the N2-adsorbing ability of TiO2 for efficient photocatalytic NH3 synthesis. Catal. Sci. Technol. 2024, 14, 343–352.

    Article  CAS  Google Scholar 

  12. Kumar, A.; Schuerings, C.; Kumar, S.; Kumar, A.; Krishnan, V. Perovskite-structured CaTiO3 coupled with g-C3N4 as a heterojunction photocatalyst for organic pollutant degradation. Beilstein J. Nanotechnol. 2018, 9, 671–685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yan, Y. X.; Yang, H.; Yi, Z.; Li, R. S.; Xian, T. Design of ternary CaTiO3/g-C3N4/AgBr Z-scheme heterostructured photocatalysts and their application for dye photodegradation. Solid State Sci. 2020, 100, 106102.

    Article  CAS  Google Scholar 

  14. Yan, X. Q.; Xia, M. Y.; Liu, H. X.; Zhang, B.; Chang, C. R.; Wang, L. Z.; Yang, G. D. An electron-hole rich dual-site nickel catalyst for efficient photocatalytic overall water splitting. Nat. Commun. 2023, 14, 1741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res. 2024, 17, 3261–3301.

    Article  CAS  Google Scholar 

  16. Wang, J. Y.; Ma, J. P.; Zhang, Q. L.; Chen, Y.; Hong, L.; Wang, B.; Chen, J. Z.; Jing, H. W. New heterojunctions of CN/TiO2 with different band structure as highly efficient catalysts for artificial photosynthesis. Appl. Catal. B: Environ. 2021, 285, 119781.

    Article  CAS  Google Scholar 

  17. Xiao, B.; Shen, C. C.; Luo, Z. G.; Li, D. Q.; Kuang, X. Y.; Wang, D. K.; Zi, B. Y.; Yan, R. H.; Lv, T. P.; Zhou, T. et al. Cu surface doped TiO2: Constructing Cu single-atoms active sites and broadening the photo-response range for efficient photocatalytic hydrogen production. Chem. Eng. J. 2023, 468, 143650.

    Article  CAS  Google Scholar 

  18. Gao, R. C.; Xiong, L. Y.; Huang, L.; Chen, W.; Li, X. Y.; Liu, X. Q.; Mao, L. Q. A new structure of Pt NF@Ni(OH)2/CdS heterojunction: Preparation, characterization and properties in photocatalytic hydrogen generation. Chem. Eng. J. 2022, 430, 132726.

    Article  CAS  Google Scholar 

  19. Sun, X. H.; Sun, L. A.; Li, G. N.; Tuo, Y. X.; Ye, C. L.; Yang, J. R.; Low, J.; Yu, X.; Bitter, J. H.; Lei, Y. P. et al. Phosphorus tailors the d-band center of copper atomic sites for efficient CO2 photoreduction under visible-light irradiation. Angew. Chem., Int. Ed. 2022, 61, e202207677.

    Article  CAS  Google Scholar 

  20. Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

    Article  CAS  Google Scholar 

  21. Daskalaki, V. M.; Antoniadou, M.; Li Puma, G.; Kondarides, D. I.; Lianos, P. Solar light-responsive Pt/CdS/TiO2 photocatalysts for hydrogen production and simultaneous degradation of inorganic or organic sacrificial agents in wastewater. Environ. Sci. Technol. 2010, 44, 7200–7205.

    Article  CAS  PubMed  Google Scholar 

  22. Ma, X. H.; Liu, Y. N.; Wang, Y. P.; Jin, Z. L. Amorphous CoSx growth on CaTiO3 nanocubes formed s-scheme heterojunction for photocatalytic hydrogen production. Energy Fuels 2021, 35, 6231–6239.

    Article  CAS  Google Scholar 

  23. Qumar, U.; Hassan, J. Z.; Bhatti, R. A.; Raza, A.; Nazir, G.; Nabgan, W.; Ikram, M. Photocatalysis vs adsorption by metal oxide nanoparticles. J. Mater. Sci. Technol. 2022, 131, 122–166.

    Article  CAS  Google Scholar 

  24. Ogata, H.; Lubitz, W.; Higuchi, Y. Structure and function of [NiFe] hydrogenases. J. Biochem. 2016, 160, 251–258.

    Article  CAS  PubMed  Google Scholar 

  25. Peters, J. W.; Schut, G. J.; Boyd, E. S.; Mulder, D. W.; Shepard, E. M.; Broderick, J. B.; King, P. W.; Adams, M. W. W. [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation. Biochim. Biophys. Acta - Mol. Cell Res. 2015, 1853, 1350–1369.

    Article  CAS  Google Scholar 

  26. Stripp, S. T.; Duffus, B. R.; Fourmond, V.; Léger, C.; Leimkühler, S.; Hirota, S.; Hu, Y. L.; Jasniewski, A.; Ogata, H.; Ribbe, M. W. Second and outer coordination sphere effects in nitrogenase, hydrogenase, formate dehydrogenase, and CO dehydrogenase. Chem. Rev. 2022, 122, 11900–11973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liang, M. M.; Yan, X. Y. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190–2200.

    Article  CAS  PubMed  Google Scholar 

  28. Hong, J. J.; Guo, Z. J.; Duan, D. H.; Zhang, Y.; Chen, X.; Li, Y. J.; Tu, Z.; Feng, L.; Chen, L.; Yan, X. Y. et al. Highly sensitive nanozyme strip: An effective tool for forensic material evidence identification. Nano Res. 2024, 17, 1785–1791.

    Article  CAS  Google Scholar 

  29. Song, N. N.; Yu, Y.; Zhang, Y. N.; Wang, Z. D.; Guo, Z. J.; Zhang, J. L.; Zhang, C. B.; Liang, M. M. Bioinspired hierarchical self-assembled nanozyme for efficient antibacterial treatment. Adv. Mater. 2024, 36, 2210455.

    Article  CAS  Google Scholar 

  30. Yu, Y.; Zhang, Y. N.; Wang, Y.; Chen, W. X.; Guo, Z. J.; Song, N. N.; Liang, M. M. Multiscale structural design of MnO2@GO superoxide dismutase nanozyme for protection against antioxidant damage. Nano Res. 2023, 16, 10763–10769.

    Article  CAS  Google Scholar 

  31. Ganguly, P.; Harb, M.; Cao, Z.; Cavallo, L.; Breen, A.; Dervin, S.; Dionysiou, D. D.; Pillai, S. C. 2D nanomaterials for photocatalytic hydrogen production. ACS Energy Lett. 2019, 4, 1687–1709

    Article  CAS  Google Scholar 

  32. Han, C.; Liu, J. J.; Yang, W. J.; Wu, Q. Q.; Yang, H.; Xue, X. X. Enhancement of photocatalytic activity of CaTiO3 through HNO3 acidification. J. Photochem. Photobiol. A: Chem. 2016, 322-323, 1–9

    Google Scholar 

  33. Cui, B.; Lin, H.; Liu, Y. Z.; Li, J. B.; Sun, P.; Zhao, X. C.; Liu, C. J. Photophysical and photocatalytic properties of core-ring structured NiCo2O4 nanoplatelets. J. Phys. Chem. C 2009, 113, 14083–14087.

    Article  CAS  Google Scholar 

  34. Liu, J.; Zhang, J. N.; Wang, D.; Li, D. Y.; Ke, J.; Wang, S. B.; Liu, S. M.; Xiao, H. N.; Wang, R. J. Highly dispersed NiCo2O4 nanodots decorated three-dimensional g-C3N4 for enhanced photocatalytic H2 generation. ACS Sustain. Chem. Eng. 2019, 7, 12428–12438.

    Article  CAS  Google Scholar 

  35. Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.; Payne, M. C. First principles methods using CASTEP. Z. Kristallogr. Cryst. Mater. 2005, 220, 567–570.

    Article  CAS  Google Scholar 

  36. Marco, J. F.; Gancedo, J. R.; Gracia, M.; Gautier, J. L.; Ríos, E.; Berry, F. J. Characterization of the nickel cobaltite, NiCo2O4, prepared by several methods: An XRD, XANES, EXAFS, and XPS study. J. Solid State Chem. 2000, 153, 74–81.

    Article  CAS  Google Scholar 

  37. Yin, X. L.; Li, L. L.; Jiang, W. J.; Zhang, Y.; Zhang, X.; Wan, L. J.; Hu, J. S. MoS2 /CdS nanosheets-on-nanorod heterostructure for highly efficient photocatalytic H2 generation under visible light irradiation. ACS Appl. Mater. Interfaces 2016, 8, 15258–15266.

    Article  CAS  PubMed  Google Scholar 

  38. Song, N. N.; Guo, Z. J.; Wang, S.; Li, Y. L.; Liu, Y. P.; Zou, M. S.; Liang, M. M. A functional hydrogenase mimic that catalyzes robust H2 evolution spontaneously in aqueous environment. Nano Res. 2024, 17, 3942–3949.

    Article  CAS  Google Scholar 

  39. You, Q. L.; Zhang, Q. X.; Gu, M. B.; Du, R. J.; Chen, P.; Huang, J.; Wang, Y. J.; Deng, S. B.; Yu, G. Self- assembled graphitic carbon nitride regulated by carbon quantum dots with optimized electronic band structure for enhanced photocatalytic degradation of diclofenac. Chem. Eng. J. 2022, 431, 133927.

    Article  CAS  Google Scholar 

  40. Kaur-Ghumaan, S.; Stein, M. [NiFe] hydrogenases: How close do structural and functional mimics approach the active site? Dalton Trans. 2014, 43, 9392–9405

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2022YFA1205801), the National Natural Science Foundation of China (Nos. T2225026, 82172087, 82071308, and 52202344), and Beijing Institute of Technology Research Fund Program for Young Scholars.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ningning Song, Zhanjun Guo or Minmin Liang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Hong, J., Song, N. et al. Heterobimetallic [NiCo] integration in a hydrogenase mimic for boosting light-driven hydrogen evolution in CaTiO3. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6666-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6666-6

Keywords

Navigation