Skip to main content
Log in

A functional hydrogenase mimic that catalyzes robust H2 evolution spontaneously in aqueous environment

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Although great progress has been made in improving hydrogen production, highly efficient catalysts, which are able to produce hydrogen in a fast and steady way at ambient temperature and pressure, are still in large demand. Here, we report a [NiCo]-based hydrogenase mimic, NiCo2O4 nanozyme, that can catalyze robust hydrogen evolution spontaneously in water without external energy input at room temperature. This hydrogenase nanozyme facilitates water splitting reaction by forming a three-center Ni–OH–Co bond analogous to the [NiFe]-hydrogenase reaction by using aluminum as electron donor, and realizes hydrogen evolution with a high production rate of 915 L·h−1 per gram of nanozymes, which is hundreds of times higher than most of the natural hydrogenase or hydrogenase mimics. Furthermore, the NiCo2O4 nanozyme can robustly disrupt the adhesive oxidized layer of aluminum and enable the full consumption of electrons from aluminum. In contrast to the often-expensive synthetic catalysts that rely on rare elements and consume high energy, we envision that this NiCo2O4 nanozyme can potentially provide an upgrade for current hydrogen evolution, accelerate the development of scale-up hydrogen production, and generate a clean energy future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. García, L. Hydrogen production by steam reforming of natural gas and other nonrenewable feedstocks. In Compendium of Hydrogen Energy. Subramani, V.; Basile, A.; Veziroglu T. N., Eds.; Elsevier: Amsterdam, 2015; pp 83–107.

    Chapter  Google Scholar 

  2. McCay, M. H.; Shafiee, S. Hydrogen: An energy carrier. In Future Energy. 3rd ed. Letcher, T. M., Ed.; Elsevier: Amsterdam, 2020; pp 475–493.

    Chapter  Google Scholar 

  3. Bicer, Y.; Khalid, F. Sustainability assessment of renewable energy-based hydrogen and ammonia pathways. In Rneewable-Energy-Driven Future. Ren, J. Z., Ed.; Elsevier: Amsterdam, 2021; pp 435–468.

    Google Scholar 

  4. Yang, C. F.; Zhong, W. D.; Shen, K.; Zhang, Q.; Zhao, R.; Xiang, H.; Wu, J.; Li, X. K.; Yang, N. J. Electrochemically reconstructed Cu-FeOOH/Fe3O4 catalyst for efficient hydrogen evolution in alkaline media. Adv. Energy Mater. 2022, 12, 2200077.

    Article  CAS  Google Scholar 

  5. Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

    Article  CAS  Google Scholar 

  6. Sokol, K. P.; Robinson, W. E.; Warnan, J.; Kornienko, N.; Nowaczyk, M. M.; Ruff, A.; Zhang, J. Z.; Reisner, E. Bias-free photoelectrochemical water splitting with photosystem II on a dye-sensitized photoanode wired to hydrogenase. Nat. Energy 2018, 3, 944–951.

    Article  CAS  Google Scholar 

  7. Xia, L.; Tong, X.; Li, X.; Imran Channa, A.; You, Y. M.; Long, Z. H.; Vomiero, A.; Wang, Z. M. Synergistic tailoring of band structure and charge carrier extraction in “green” core/shell quantum dots for highly efficient solar energy conversion. Chem. Eng. J. 2022, 442, 136214.

    Article  CAS  Google Scholar 

  8. Liu, W. Q.; Peng, H. P.; Li, L. G.; Wang, M. M.; Geng, H. B.; Huang, X. Q. Modulate the electronic structure of Cu7S4 nanosheet on TiO2 for enhanced photocatalytic hydrogen evolution. Nano Res. 2023, 16, 4488–4493.

    Article  CAS  Google Scholar 

  9. Bolt, A.; Dincer, I.; Agelin-Chaab, M. A review of unique aluminum-water based hydrogen production options. Energy & Fuels 2021, 35, 1024–1040.

    Article  CAS  Google Scholar 

  10. Trowell, K.; Blanchet, J.; Goroshin, S.; Frost, D.; Bergthorson, J. Hydrogen production via reaction of metals with supercritical water. Sustain. Energy Fuels 2022, 6, 3394–3401.

    Article  CAS  Google Scholar 

  11. Xu, S.; Zhao, X.; Liu, J. Liquid metal activated aluminum-water reaction for direct hydrogen generation at room temperature. Renew. Sust. Energy Rev. 2018, 92, 17–37.

    Article  CAS  Google Scholar 

  12. Smith, I. E. Hydrogen generation by means of the aluminum/water reaction. J. Hydronaut. 1972, 6, 106–109.

    Article  Google Scholar 

  13. Deng, Z. Y.; Ferreira, J. M. F.; Tanaka, Y.; Ye, J. H. Physicochemical mechanism for the continuous reaction of γ-Al2O3-modified aluminum powder with water. J. Am. Ceram. Soc. 2007, 90, 1521–1526.

    Article  CAS  Google Scholar 

  14. Deng, Z. Y.; Ferreira, J. M. F.; Sakka, Y. Hydrogen-generation materials for portable applications. J. Am. Ceram. Soc. 2008, 91, 3825–3834.

    Article  CAS  Google Scholar 

  15. Hambourger, M.; Gervaldo, M.; Svedruzic, D.; King, P. W.; Gust, D.; Ghirardi, M.; Moore, A. L.; Moore, T. A. [FeFe]-hydrogenase-catalyzed H2 production in a photoelectrochemical biofuel cell. J. Am Chem. Soc. 2008, 130, 2015–2022.

    Article  CAS  PubMed  Google Scholar 

  16. Kanygin, A.; Milrad, Y.; Thummala, C.; Reifschneider, K.; Baker, P.; Marco, P.; Yacoby, I.; Redding, K. E. Rewiring photosynthesis: A photosystem I-hydrogenase chimera that makes H2 in vivo. Energy Environ. Sci. 2020, 13, 2903–2914.

    Article  CAS  Google Scholar 

  17. Shima, S.; Pilak, O.; Vogt, S.; Schick, M.; Stagni, M. S.; Meyer-Klaucke, W.; Warkentin, E.; Thauer, R. K.; Ermler, U. The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site. Science 2008, 321, 572–575.

    Article  CAS  PubMed  Google Scholar 

  18. Peters, J. W.; Schut, G. J.; Boyd, E. S.; Mulder, D. W.; Shepard, E. M.; Broderick, J. B.; King, P. W.; Adams, M. W. W. [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation. Biochim. Biophys. Acta Mol. Cell Res. 2015, 1853, 1350–1369.

    Article  CAS  Google Scholar 

  19. Ogata, H.; Lubitz, W.; Higuchi, Y. Structure and function of [NiFe] hydrogenases. J. Biochem. 2016, 160, 251–258.

    Article  CAS  PubMed  Google Scholar 

  20. Jordan, P. C.; Patterson, D. P.; Saboda, K. N.; Edwards, E. J.; Miettinen, H. M.; Basu, G.; Thielges, M. C.; Douglas, T. Self-assembling biomolecular catalysts for hydrogen production. Nat. Chem. 2016, 8, 179–185.

    Article  CAS  PubMed  Google Scholar 

  21. Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

    Article  CAS  PubMed  Google Scholar 

  22. Jiang, B.; Duan, D. M.; Gao, L. Z.; Zhou, M. J.; Fan, K. L.; Tang, Y.; Xi, J. Q.; Bi, Y. H.; Tong, Z.; Gao, G. F. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506–1520.

    Article  CAS  PubMed  Google Scholar 

  23. Liang, M. M.; Yan, X. Y. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190–2200.

    Article  CAS  PubMed  Google Scholar 

  24. Chen, Y. J.; Wang, P. X.; Hao, H. G.; Hong, J. J.; Li, H. J.; Ji, S. F.; Li, A.; Gao, R.; Dong, J. C.; Han, X. D. et al. Thermal atomization of platinum nanoparticles into single atoms: An effective strategy for engineering high-performance nanozymes. J. Am. Chem. Soc. 2021, 143, 18643–18651.

    Article  CAS  PubMed  Google Scholar 

  25. Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.

    Article  CAS  Google Scholar 

  26. Yu, Y.; Zhang, Y. N.; Wang, Y.; Chen, W. X.; Guo, Z. J.; Song, N. N.; Liang, M. M. Multiscale structural design of MnO2@GO superoxide dismutase nanozyme for protection against antioxidant damage. Nano Res. 2023, 16, 10763–10769.

    Article  CAS  Google Scholar 

  27. Sun, X.; Sun, J. F.; Guo, L. Z.; Hou, L. R.; Yuan, C. Z. Understanding the crystal structure-dependent electrochemical capacitance of spinel and rock-salt Ni-Co oxides via density function theory calculations. RSCAdv. 2020, 10, 35611–35618.

    CAS  Google Scholar 

  28. Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.; Payne, M. C. First principles methods using CASTEP. Z. Kristallogr. Cryst. Mater. 2005, 220, 567–570.

    Article  CAS  Google Scholar 

  29. Liu, Y. P.; Sheng, W. F.; Wu, Z. H. Synchrotron radiation and its applications in inorganic materials. J. Inorg. Mater. 2021, 36, 901–918.

    Article  Google Scholar 

  30. Marco, J. F.; Gancedo, J. R.; Gracia, M.; Gautier, J. L.; Ríos, E.; Berry, F. J. Characterization of the nickel cobaltite, NiCo2O4, prepared by several methods: An XRD, XANES, EXAFS, and XPS study. J. Solid State Chem. 2000, 153, 74–81.

    Article  CAS  Google Scholar 

  31. Wei, W.; Sun, P. Q.; Li, Z.; Song, K. S.; Su, W. Y.; Wang, B.; Liu, Y. Z.; Zhao, J. A surface-display biohybrid approach to light-driven hydrogen production in air. Sci. Adv. 2018, 4, eaap9253.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wegelius, A.; Land, H.; Berggren, G.; Lindblad, P. Semisynthetic [FeFe]-hydrogenase with stable expression and H2 production capacity in a photosynthetic microbe. Cell Rep. Phys. Sci. 2021, 2, 100376.

    Article  CAS  Google Scholar 

  33. Tang, P.; Gao, P.; Cui, X. H.; Chen, Z.; Fu, Q. F.; Wang, Z. X.; Mo, Y.; Liu, H.; Xu, C. H.; Liu, J. L. et al. Covalency competition induced active octahedral sites in spinel cobaltites for enhanced pseudocapacitive charge storage. Adv. Energy Mater. 2022, 12, 2102053.

    Article  CAS  Google Scholar 

  34. Qi, J.; Lin, Y. P.; Chen, D. D.; Zhou, T. H.; Zhang, W.; Cao, R. Autologous cobalt phosphates with modulated coordination sites for electrocatalytic water oxidation. Angew. Chem., Int. Ed. 2020, 59, 8917–8921.

    Article  CAS  Google Scholar 

  35. Wu, T. Z.; Sun, S. N.; Song, J. J.; Xi, S. B.; Du, Y. H.; Chen, B.; Sasangka, W. A.; Liao, H. B.; Gan, C. L.; Scherer, G. G. et al. Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat. Catal. 2019, 2, 763–772.

    Article  CAS  Google Scholar 

  36. Chen, Y. K.; Teng, H. T.; Lee, T. Y.; Wang, H. W. Rapid hydrogen generation from aluminum-water system by adjusting water ratio to various aluminum/aluminum hydroxide. Int. J. Energy Environ. 2014, 5, 87.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. T2225026, 82172087, 22025604, 82071308, and 52202344), the National Key R&D Program of China (No. 2022YFA120012501), and Beijing Institute of Technology Research Fund Program for Young Scholars.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meishuai Zou or Minmin Liang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, N., Guo, Z., Wang, S. et al. A functional hydrogenase mimic that catalyzes robust H2 evolution spontaneously in aqueous environment. Nano Res. 17, 3942–3949 (2024). https://doi.org/10.1007/s12274-023-6399-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6399-y

Keywords

Navigation