Skip to main content
Log in

Highly sensitive nanozyme strip: an effective tool for forensic material evidence identification

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

During criminal case investigations, blood evidence tracing is critical for criminal investigation. However, the blood stains are often cleaned or covered up after the crime, resulting in trace residue and difficult tracking. Therefore, a highly sensitive and specific method for the rapid detection of human blood stains remains urgent. To solve this problem, we established a nanozyme-based strip for rapid detection of blood evidence with high sensitivity and specificity. To construct reliable nanozyme strips, we synthesized CoFe2O4 nanozymes with high peroxidase-like activity by scaling up to gram level, which can be supplied for six million tests, and conjugated antibody as a detection probe in nanozyme strip. The developed CoFe2O4 nanozyme strip can detect human hemoglobin (HGB) at a concentration as low as 1 ng/mL, which is 100 times lower than the commercially available colloidal gold strips (100 ng/mL). Moreover, this CoFe2O4 nanozyme strip showed high generality on 12 substrates and high specificity to human HGB among 13 animal blood samples. Finally, we applied the developed CoFe2O4 nanozyme strip to successfully detect blood stains in three real cases, where the current commercial colloidal gold strip failed to do. The results suggest that the CoFe2O4 nanozyme strip can be used as an effective on-scene detection method for human blood stains, and can further be used as a long-term preserved material evidence for traceability inquiry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, J.; Mathew, J. J.; Dube, R. R.; Messinger, D. W. Spectral feature characterization methods for blood stain detection in crime scene backgrounds.. In Proceedings of SPIE 9840, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXII, Baltimore, MD, USA 2016, 98400E.

  2. Faflak, R.; Attinger, D. Experimental study of how far blood spatter stains on fabrics can be found from the blood source, and relevance to crime scene reconstruction. Exp. Fluids 2021, 62, 87.

    Article  Google Scholar 

  3. Schneider, T. D.; Roschitzki, B.; Grossmann, J.; Kraemer, T.; Steuer, A. E. Determination of the time since deposition of blood traces utilizing a liquid chromatography-mass spectrometry-based proteomics approach. Anal. Chem. 2022, 94, 10695–10704.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, Y. N.; Xue, C. L.; Xu, Y. L.; Cui, S. S.; Ganeev, A. A.; Kistenev, Y. V.; Gubal, A.; Chuchina, V.; Jin, H.; Cui, D. X. Metal-organic frameworks based surface-enhanced Raman spectroscopy technique for ultra-sensitive biomedical trace detection. Nano Res. 2023, 16, 2968–2979.

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Sharma, V.; Kumar, R. Trends of chemometrics in bloodstain investigations. TrAC Trends Anal. Chem. 2018, 107, 181–195.

    Article  CAS  Google Scholar 

  6. Castelló, A.; Francès, F.; Corella, D.; Verdú, F. Active oxygen doctors the evidence. Naturwissenschaften 2009, 96, 303–307.

    Article  ADS  PubMed  Google Scholar 

  7. Shyu, R. H.; Shyu, H. F.; Liu, H. W.; Tang, S. S. Colloidal gold-based immunochromatographic assay for detection of ricin. Toxicon 2002, 40, 255–258.

    Article  CAS  PubMed  Google Scholar 

  8. Winnepenninckx, A.; Verhoeven, E.; Vermeulen, S.; Bekaert, B. Evaluation of infrared photography for latent bloodstain visualization and the influence of time. Forensic Sci. Int. 2022, 331, 111167.

    Article  PubMed  Google Scholar 

  9. Suwa, N.; Ikegaya, H.; Takasaka, T.; Nishigaki, K.; Sakurada, K. Human blood identification using the genome profiling method. Leg. Med. 2012, 14, 121–125.

    Article  CAS  Google Scholar 

  10. Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Liang, M. M.; Yan, X. Y. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190–2200.

    Article  CAS  PubMed  Google Scholar 

  12. Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076.

    Article  CAS  PubMed  Google Scholar 

  13. Chen, Y. J.; Jiang, B.; Hao, H. G.; Li, H. J.; Qiu, C. Y.; Liang, X.; Qu, Q. Y.; Zhang, Z. D.; Gao, R.; Duan, D. M. et al. Atomic-level regulation of cobalt single-atom nanozymes: Engineering high-efficiency catalase mimics. Angew. Chem., Int. Ed. 2023, 62, e202301879.

    Article  CAS  Google Scholar 

  14. Dong, H. J.; Fan, Y. Y.; Zhang, W.; Gu, N.; Zhang, Y. Catalytic mechanisms of nanozymes and their applications in biomedicine. Bioconjug. Chem. 2019, 30, 1273–1296.

    Article  CAS  PubMed  Google Scholar 

  15. Meng, X. Q.; Li, D. D.; Chen, L.; He, H.; Wang, Q.; Hong, C. Y.; He, J. Y.; Gao, X. F.; Yang, Y. L.; Jiang, B. et al. High-performance self-cascade pyrite nanozymes for apoptosis-ferroptosis synergistic tumor therapy. ACS Nano 2021, 15, 5735–5751.

    Article  CAS  PubMed  Google Scholar 

  16. Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.

    Article  CAS  Google Scholar 

  17. Jiang, Y. X.; Rong, H. T.; Wang, Y. F.; Liu, S. G.; Xu, P.; Luo, Z.; Guo, L. M.; Zhu, T.; Rong, H. P.; Wang, D. S. et al. Single-atom cobalt nanozymes promote spinal cord injury recovery by anti-oxidation and neuroprotection.. Nano Res., in press.

  18. Duan, D. M.; Fan, K. L.; Zhang, D. X.; Tan, S. G.; Liang, M. F.; Liu, Y.; Zhang, J. L.; Zhang, P. H.; Liu, W.; Qiu, X. G. et al. Nanozyme-strip for rapid local diagnosis of Ebola. Biosens. Bioelectron. 2015, 74, 134–141.

    Article  CAS  PubMed  Google Scholar 

  19. Lin, J. S.; Wang, Q.; Wang, X. Y.; Zhu, Y. Y.; Zhou, X.; Wei, H. Gold alloy-based nanozyme sensor arrays for biothiol detection. Analyst 2020, 145, 3916–3921.

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Li, Z.; Liu, F. N.; Chen, C. X.; Jiang, Y. Y.; Ni, P. J.; Song, N. N.; Hu, Y.; Xi, S. B.; Liang, M. M.; Lu, Y. Z. Regulating the N coordination environment of Co single-atom nanozymes for highly efficient oxidase mimics. Nano Lett. 2023, 23, 1505–1513.

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Wang, S. Q.; Jin, Y.; Ai, W. H.; Wang, X. F.; Zhang, Z. Q.; Zhou, T.; Zhang, G. D.; Wang, F. H2O2 actuated molybdenum oxide nanodots: Multi-enzyme-like activities, leverage of Fenton reaction, and dual-mode sensitive detection of alendronate sodium.. Nano Res. 2023, in press.

  22. Liang, M. M.; Fan, K. L.; Pan, Y.; Jiang, H.; Wang, F.; Yang, D. L.; Lu, D.; Feng, J.; Zhao, J. J.; Yang, L. et al. Fe3O4 magnetic nanoparticle peroxidase mimetic-based colorimetric assay for the rapid detection of organophosphorus pesticide and nerve agent. Anal. Chem. 2013, 85, 308–312.

    Article  CAS  PubMed  Google Scholar 

  23. Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357–4412.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, L.; Liu, Z. W.; Deng, Q. Q.; Sang, Y. J.; Dong, K.; Ren, J. S.; Qu, X. G. Nature-inspired construction of MOF@COF nanozyme with active sites in tailored microenvironment and pseudopodia-like surface for enhanced bacterial inhibition. Angew. Chem., Int. Ed. 2021, 60, 3469–3474.

    Article  CAS  Google Scholar 

  25. Chen, Y. J.; Wang, P. X.; Hao, H. G.; Hong, J. J.; Li, H. J.; Ji, S. F.; Li, A.; Gao, R.; Dong, J. C.; Han, X. D. et al. Thermal atomization of platinum nanoparticles into single atoms: An effective strategy for engineering high-performance nanozymes. J. Am. Chem. Soc. 2021, 143, 18643–18651.

    Article  CAS  PubMed  Google Scholar 

  26. Liu, D.; Ju, C. H.; Han, C.; Shi, R.; Chen, X. H.; Duan, D. M.; Yan, J. H.; Yan, X. Y. Nanozyme chemiluminescence paper test for rapid and sensitive detection of SARS-CoV-2 antigen. Biosens. Bioelectron. 2021, 173, 112817.

    Article  CAS  Google Scholar 

  27. Meng, X. Q.; Zou, S. J.; Li, D. D.; He, J. Y.; Fang, L.; Wang, H. J.; Yan, X. Y.; Duan, D. M.; Gao, L. Z. Nanozyme-strip for rapid and ultrasensitive nucleic acid detection of SARS-CoV-2. Biosens. Bioelectron. 2022, 217, 114739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Deng, H.; Li, X. L.; Peng, Q.; Wang, X.; Chen, J. P.; Li, Y. D. Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. Int. Ed. 2005, 44, 2782–2785.

    Article  CAS  Google Scholar 

  29. Huang, X. L.; Zhuang, J.; Chen, D.; Liu, H. Y.; Tang, F. Q.; Yan, X. Y.; Meng, X. W.; Zhang, L.; Ren, J. General strategy for designing functionalized magnetic microspheres for different bioapplications. Langmuir 2009, 25, 11657–11663.

    Article  CAS  PubMed  Google Scholar 

  30. Zhao, X. N.; Hu, H. C.; Zhang, F. J.; Zhang, Z. H. Magnetic CoFe2O4 nanoparticle immobilized N-propyl diethylenetriamine sulfamic acid as an efficient and recyclable catalyst for the synthesis of amides via the Ritter reaction. Appl. Catal. A:Gen. 2014, 482, 258–265.

    Article  CAS  Google Scholar 

  31. Jiang, B.; Duan, D. M.; Gao, L. Z.; Zhou, M. J.; Fan, K. L.; Tang, Y.; Xi, J. Q.; Bi, Y. H.; Tong, Z.; Gao, G. F. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506–1520.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, K.; Zuo, W.; Wang, Z. Y.; Liu, J.; Li, T. R.; Wang, B. D.; Yang, Z. Y. A simple route to CoFe2O4 nanoparticles with shape and size control and their tunable peroxidase-like activity. RSC Adv. 2015, 5, 10632–10640.

    Article  ADS  CAS  Google Scholar 

  33. Zhang, W.; Hu, S. L.; Yin, J. J.; He, W. W.; Lu, W.; Ma, M.; Gu, N.; Zhang, Y. Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. J. Am. Chem. Soc. 2016, 138, 5860–5865.

    Article  CAS  PubMed  Google Scholar 

  34. Gholami, H.; Koohestani, H.; Ahmadi, M. Synthesis and characterization of CoFe2O4 and CuFe2O4 composited with hematite by impregnation method to remove organic pollutants. Iran. J. Mater. Sci. Eng. 2021, 18, 12–20.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from the National Natural Science Foundation of China (No. 82072324), the National Key R&D Program of China (No. 2019YFA0709200), National Natural Science Foundation of China Foundation of Innovative Research Group grant (No. 22121003) and the Chongqing Special Key Project of Technological Innovation and Application Development (No. cstc2019jscx-gksbX0053).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiyun Yan, Lizeng Gao, Minmin Liang or Demin Duan.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, J., Guo, Z., Duan, D. et al. Highly sensitive nanozyme strip: an effective tool for forensic material evidence identification. Nano Res. 17, 1785–1791 (2024). https://doi.org/10.1007/s12274-023-6012-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6012-4

Keywords

Navigation