Skip to main content
Log in

Screening of transition metal oxides for electrocatalytic nitrate reduction to ammonia at large currents

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electrochemical nitrate reduction reaction (NO3RR) towards ammonia, as an emerging and appealing technology alternative to the energy-intensive Haber–Bosch process and inefficient nitrogen reduction reaction, has recently aroused wide concern and research. However, the current research of the NO3RR towards ammonia lacks the overall performance comparison of various electrocatalysts. Given this, we here make a comparison of 12 common transition metal oxide catalysts for the NO3RR under a high cathodic current density of 0.25 A·cm−2, wherein Co3O4 catalyst displays the highest ammonia Faradaic efficiency (85.15%) and moderate activity (ca. −0.25 V vs. reversible hydrogen electrode). Other external factors, such as nitrate concentrations in the electrolyte and applied potential ranges, have also been specifically investigated for the NO3RR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zheng, J. X.; Liu, X.; Zheng, Y. G.; Gandi, A. N.; Kuai, X. X.; Wang, Z. C.; Zhu, Y. P.; Zhuang, Z. C.; Liang, H. F. AgxZny protective coatings with selective Zn2+/H+ binding enable reversible Zn anodes. Nano Lett. 2023, 23, 6156–6163.

    Article  CAS  PubMed  Google Scholar 

  2. Kang, Q.; Zhuang, Z. C.; Liu, Y. J.; Liu, Z. H.; Li, Y.; Sun, B.; Pei, F.; Zhu, H.; Li, H. F.; Li, P. L. et al. Engineering the structural uniformity of gel polymer electrolytes via pattern-guided alignment for durable, safe solid-state lithium metal batteries. Adv. Mater. 2023, 35, 2303460.

    Article  CAS  Google Scholar 

  3. Hu, B.; Xu, J.; Fan, Z. J.; Xu, C.; Han, S. C.; Zhang, J. X.; Ma, L. B.; Ding, B.; Zhuang, Z. C.; Kang, Q. et al. Covalent organic framework based lithium-sulfur batteries: Materials, interfaces, and solid-state electrolytes. Adv. Energy Mater. 2023, 13, 2203540.

    Article  CAS  Google Scholar 

  4. Kang, Q.; Zhuang, Z. C.; Li, Y.; Zuo, Y. Z.; Wang, J.; Liu, Y. J.; Shi, C. Q.; Chen, J.; Li, H. F.; Jiang, P. K. et al. Manipulating dielectric property of polymer coatings toward high-retention-rate lithium metal full batteries under harsh critical conditions. Nano Res. 2023, 16, 9240–9249.

    Article  CAS  Google Scholar 

  5. Kang, Q.; Li, Y.; Zhuang, Z. C.; Wang, D. S.; Zhi, C. Y.; Jiang, P. K.; Huang, X. Y. Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries. J. Energy Chem. 2022, 69, 194–204.

    Article  CAS  Google Scholar 

  6. Zhang, E. H.; Hu, X.; Meng, L. Z.; Qiu, M.; Chen, J. X.; Liu, Y. J.; Liu, G. Y.; Zhuang, Z. C.; Zheng, X. B.; Zheng, L. R. et al. Single-atom yttrium engineering janus electrode for rechargeable Na−S batteries. J. Am. Chem. Soc. 2022, 144, 18995–19007.

    Article  CAS  PubMed  Google Scholar 

  7. Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

    Article  CAS  Google Scholar 

  8. Li, X.; Guan, Q. H.; Zhuang, Z. C.; Zhang, Y. Z.; Lin, Y. H.; Wang, J.; Shen, C. Y.; Lin, H. Z.; Wang, Y. L.; Zhan, L. et al. Ordered mesoporous carbon grafted mxene catalytic heterostructure as Li-ion kinetic pump toward high-efficient sulfur/sulfide conversions for Li−S battery. ACS Nano 2023, 17, 1653–1662.

    Article  CAS  Google Scholar 

  9. Zhang, X.; Li, X. Y.; Zhang, Y. Z.; Li, X.; Guan, Q. H.; Wang, J.; Zhuang, Z. C.; Zhuang, Q.; Cheng, X. M.; Liu, H. T. et al. Accelerated Li+ desolvation for diffusion booster enabling low-temperature sulfur redox kinetics via electrocatalytic carbon-grazfted-CoP porous nanosheets. Adv. Funct. Mater. 2023, 33, 2302624.

    Article  CAS  Google Scholar 

  10. Wang, R.; Wu, Q. F.; Wu, M. J.; Zheng, J. X.; Cui, J.; Kang, Q.; Qi, Z. B.; Ma, J. D.; Wang, Z. C.; Liang, H. F. Interface engineering of Zn meal anodes using electrochemically inert Al2O3 protective nanocoatings. Nano Res. 2022, 15, 7227–7233.

    Article  CAS  Google Scholar 

  11. Li, Y.; Hua, Y. Q.; Sun, N.; Liu, S. J.; Li, H. X.; Wang, C.; Yang, X. Y.; Zhuang, Z. C.; Wang, L. L. Moiré superlattice engineering of two-dimensional materials for electrocatalytic hydrogen evolution reaction. Nano Res. 2023, 16, 8712–8728.

    Article  CAS  Google Scholar 

  12. Li, X. Y.; Zhuang, Z. C.; Chai, J.; Shao, R. W.; Wang, J. H.; Jiang, Z. L.; Zhu, S. W.; Gu, H. F.; Zhang, J.; Ma, Z. T. et al. Atomically strained metal sites for highly efficient and selective photooxidation. Nano Lett. 2023, 23, 2905–2914.

    Article  CAS  PubMed  Google Scholar 

  13. Sun, C.; Wang, L. L.; Zhao, W. W.; Xie, L. B.; Wang, J.; Li, J. M.; Li, B. X.; Liu, S. J.; Zhuang, Z. C.; Zhao, Q. Atomic-level design of active site on two-dimensional MoS2 toward efficient hydrogen evolution: Experiment, theory, and artificial intelligence modelling. Adv. Funct. Mater. 2022, 32, 2206163.

    Article  CAS  Google Scholar 

  14. Huang, J. Z.; Zhuang, Z. C.; Zhao, Y.; Chen, J. Q.; Zhuo, Z. W.; Liu, Y. W.; Lu, N.; Li, H. Q.; Zhai, T. Y. Back-gated van der waals heterojunction manipulates local charges toward fine-tuning hydrogen evolution. Angew. Chem. 2022, 134, e202203522.

    Article  Google Scholar 

  15. Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Wang, C.; Lu, S. L.; Duan, F.; Xu, F. P.; Du, M. L.; Zhu, H. Interatomic electronegativity offset dictates selectivity when catalyzing the CO2 reduction reaction. Adv. Energy Mater. 2022, 12, 2200579.

    Article  CAS  Google Scholar 

  16. Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

    Article  CAS  Google Scholar 

  17. Sharma, R.; Sharma, A.; Agarwal, S.; Dhaka, M. S. Stability and efficiency issues, solutions and advancements in perovskite solar cells: A review. Solar Energy 2022, 244, 516–535.

    Article  CAS  Google Scholar 

  18. Qi, Z. B.; Zeng, Y.; Hou, Z.; Zhu, W. J.; Wei, B. B.; Yang, Y.; Lin, B. L.; Liang, H. F. Heterointerface engineering of Ni/Ni3N hierarchical nanoarrays for efficient alkaline hydrogen evolution. Nano Res. 2023, 16, 4803–4811.

    Article  CAS  Google Scholar 

  19. Mei, G.; Liang, H. F.; Wei, B. B.; Shi, H. H.; Ming, F. W.; Xu, X.; Wang, Z. C. Bimetallic MnCo selenide yolk shell structures for efficient overall water splitting. Electrochim. Acta 2018, 290, 82–89.

    Article  CAS  Google Scholar 

  20. Zhu, W. J.; Yao, F.; Cheng, K. J.; Zhao, M. T.; Yang, C. J.; Dong, C. L.; Hong, Q. M.; Jiang, Q.; Wang, Z. C.; Liang, H. F. Direct dioxygen radical coupling driven by octahedral ruthenium-oxygen-cobalt collaborative coordination for acidic oxygen evolution reaction. J. Am. Chem. Soc. 2023, 145, 17995–18006.

    Article  CAS  PubMed  Google Scholar 

  21. Liang, H. F.; Cao, Z.; Xia, C.; Ming, F. W.; Zhang, W. L.; Emwas, A. H.; Cavallo, L.; Alshareef, H. N. Tungsten blue oxide as a reusable electrocatalyst for acidic water oxidation by plasma-induced vacancy engineering. CCS Chem. 2021, 3, 1553–1561.

    Article  CAS  Google Scholar 

  22. Zhu, W. J.; Zhang, X. Y.; Yao, F.; Huang, R. P.; Chen, Y.; Chen, C. L.; Fei, J. W.; Chen, Y. Q.; Wang, Z. C.; Liang, H. F. A hydrazine-nitrate flow battery catalyzed by a bimetallic RuCo precatalyst for wastewater purification along with simultaneous generation of ammonia and electricity. Angew. Chem. 2023, 135, e202300390.

    Article  Google Scholar 

  23. Zhu, W. J.; Yao, F.; Wu, Q. F.; Jiang, Q.; Wang, J. X.; Wang, Z. C.; Liang, H. F. Weakened d-p orbital hybridization in situ reconstructed Ru/β-Co(OH)2 heterointerfaces for accelerated ammonia electrosynthesis from nitrates. Energy Environ. Sci. 2023, 16, 2483–2493.

    Article  CAS  Google Scholar 

  24. Smith, C.; Hill, A. K.; Torrente-Murciano, L. Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape. Energy Environ. Sci. 2020, 13, 331–344.

    Article  Google Scholar 

  25. MacFarlane, D. R.; Cherepanov, P. V.; Choi, J.; Suryanto, B. H. R.; Hodgetts, R. Y.; Bakker, J. M.; Ferrero Vallana, F. M.; Simonov, A. N. A roadmap to the ammonia economy. Joule 2020, 4, 1186–1205.

    Article  CAS  Google Scholar 

  26. Foster, S. L.; Bakovic, S. I. P.; Duda, R. D.; Maheshwari, S.; Milton, R. D.; Minteer, S. D.; Janik, M. J.; Renner, J. N.; Greenlee, L. F. Catalysts for nitrogen reduction to ammonia. Nat. Catal. 2018, 1, 490–500.

    Article  Google Scholar 

  27. Xu, H.; Ma, Y. Y.; Chen, J.; Zhang, W. X.; Yang, J. P. Electrocatalytic reduction of nitrate-a step towards a sustainable nitrogen cycle. Chem. Soc. Rev. 2022, 51, 2710–2758.

    Article  CAS  PubMed  Google Scholar 

  28. Wang, Y. T.; Wang, C. H.; Li, M. Y.; Yu, Y. F.; Zhang, B. Nitrate electroreduction: Mechanism insight, in situ characterization, performance evaluation, and challenges. Chem. Soc. Rev. 2021, 50, 6720–6733.

    Article  CAS  PubMed  Google Scholar 

  29. Singh, N.; Goldsmith, B. R. Role of electrocatalysis in the remediation of water pollutants. ACS Catal. 2020, 10, 3365–3371.

    Article  CAS  Google Scholar 

  30. Chen, G. F.; Yuan, Y. F.; Jiang, H. F.; Ren, S. Y.; Ding, L. X.; Ma, L.; Wu, T. P.; Lu, J.; Wang, H. H. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst. Nat. Energy 2020, 5, 605–613.

    Article  CAS  Google Scholar 

  31. Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

    Article  CAS  Google Scholar 

  32. Hao, J. C.; Zhuang, Z. C.; Cao, K. C.; Gao, G. H.; Wang, C.; Lai, F. L.; Lu, S. L.; Ma, P. M.; Dong, W. F.; Liu, T. X. et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat. Commun. 2022, 13, 2662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hao, J. C.; Zhu, H.; Zhuang, Z. C.; Zhao, Q.; Yu, R. H.; Hao, J. C.; Kang, Q.; Lu, S. L.; Wang, X. F.; Wu, J. S. et al. Competitive trapping of single atoms onto a metal carbide surface. ACS Nano 2023, 17, 6955–6965.

    Article  CAS  PubMed  Google Scholar 

  34. Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

    Article  CAS  Google Scholar 

  35. Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Cao, K. C.; Hu, Y. X.; Wu, W. B.; Lu, S. L.; Wang, C.; Zhang, N.; Wang, D. S. et al. Strain relaxation in metal alloy catalysts steers the product selectivity of electrocatalytic CO2 reduction. ACS Nano 2022, 16, 3251–3263.

    Article  CAS  PubMed  Google Scholar 

  36. Niu, H.; Zhang, Z. F.; Wang, X. T.; Wan, X. H.; Shao, C.; Guo, Y. Z. Theoretical insights into the mechanism of selective nitrate-to-ammonia electroreduction on single-atom catalysts. Adv. Funct. Mater. 2020, 31, 2008533.

    Article  Google Scholar 

  37. Wang, Y. Y.; Wu, D. H.; Lv, P.; He, B. L.; Li, X.; Ma, D. W.; Jia, Y. Theoretical insights into the electroreduction of nitrate to ammonia on graphene-based single-atom catalysts. Nanoscale 2022, 14, 10862–10872.

    Article  CAS  PubMed  Google Scholar 

  38. Wang, Y. T.; Zhou, W.; Jia, R. R.; Yu, Y. F.; Zhang, B. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angew. Chem., Int. Ed. 2020, 59, 5350–5354.

    Article  CAS  Google Scholar 

  39. Zhang, S.; Li, M.; Li, J. C.; Song, Q. N.; Liu, X. High-ammonia selective metal-organic framework-derived co-doped Fe/Fe2O3 catalysts for electrochemical nitrate reduction. Proc. Natl. Acad. Sci. USA 2022, 119, e2115504119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, R.; Guo, Y.; Zhang, S. C.; Chen, D.; Zhao, Y. W.; Huang, Z. D.; Ma, L. T.; Li, P.; Yang, Q.; Liang, G. J. et al. Efficient ammonia electrosynthesis and energy conversion through a Zn-nitrate battery by iron doping engineered nickel phosphide catalyst. Adv. Energy Mater. 2022, 12, 2103872.

    Article  CAS  Google Scholar 

  41. Wu, Z. Y.; Karamad, M.; Yong, X.; Huang, Q. Z.; Cullen, D. A.; Zhu, P.; Xia, C.; Xiao, Q. F.; Shakouri, M.; Chen, F. Y. et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat. Commun. 2021, 12, 2870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, P. P.; Jin, Z. Y.; Fang, Z. W.; Yu, G. H. A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate. Energy Environ. Sci. 2021, 14, 3522–3531.

    Article  CAS  Google Scholar 

  43. Fan, X. Y.; Xie, L. S.; Liang, J.; Ren, Y. C.; Zhang, L. C.; Yue, L. C.; Li, T. S.; Luo, Y. L.; Li, N.; Tang, B. et al. In situ grown Fe3O4 particle on stainless steel: A highly efficient electrocatalyst for nitrate reduction to ammonia. Nano Res. 2022, 15, 3050–3055

    Article  CAS  Google Scholar 

  44. Fu, X. B.; Zhao, X. G.; Hu, X. B.; He, K.; Yu, Y. N.; Li, T.; Tu, Q.; Qian, X.; Yue, Q.; Wasielewski, M. R. et al. Alternative route for electrochemical ammonia synthesis by reduction of nitrate on copper nanosheets. Appl. Mater. Today 2020, 19, 100620.

    Article  Google Scholar 

  45. Hu, Q.; Qin, Y. J.; Wang, X. D.; Wang, Z. Y.; Huang, X. W.; Zheng, H. J.; Gao, K. R.; Yang, H. P.; Zhang, P. X.; Shao, M. H. et al. Reaction intermediate-mediated electrocatalyst synthesis favors specified facet and defect exposure for efficient nitrate-ammonia conversion. Energy Environ. Sci. 2021, 14, 4989–4997.

    Article  CAS  Google Scholar 

  46. Wang, J.; Cai, C.; Wang, Y. A.; Yang, X. M.; Wu, D. J.; Zhu, Y. M.; Li, M. H.; Gu, M.; Shao, M. H. Electrocatalytic reduction of nitrate to ammonia on low-cost ultrathin CoOx nanosheets. ACS Catal. 2021, 11, 15135–15140.

    Article  CAS  Google Scholar 

  47. Deng, Z. Q.; Liang, J.; Liu, Q.; Ma, C. Q.; Xie, L. S.; Yue, L. C.; Ren, Y. C.; Li, T. S.; Luo, Y. S.; Li, N. et al. High-efficiency ammonia electrosynthesis on self-supported Co2AlO4 nanoarray in neutral media by selective reduction of nitrate. Chem. Eng. J. 2022, 435, 135104.

    Article  CAS  Google Scholar 

  48. Liu, S. S.; Qian, T.; Wang, M. F.; Ji, H. Q.; Shen, X. W.; Wang, C.; Yan, C. L. Proton-filtering covalent organic frameworks with superior nitrogen penetration flux promote ambient ammonia synthesis. Nat. Catal. 2021, 4, 322–331.

    Article  CAS  Google Scholar 

  49. Liu, P. Y.; Shi, K.; Chen, W. Z.; Gao, R.; Liu, Z. L.; Hao, H. G.; Wang, Y. Q. Enhanced electrocatalytic nitrogen reduction reaction performance by interfacial engineering of MOF-based sulfides FeNi2S4/NiS hetero-interface. Appl. Catal. B Environ. 2021, 287, 119956.

    Article  CAS  Google Scholar 

  50. Hao, Y. C.; Guo, Y.; Chen, L. W.; Shu, M.; Wang, X. Y.; Bu, T. A.; Gao, W. Y.; Zhang, N.; Su, X.; Feng, X. et al. Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nat. Catal. 2019, 2, 448–456.

    Article  CAS  Google Scholar 

  51. Liu, R. Q.; Guo, T.; Fei, H.; Wu, Z. Z.; Wang, D. Z.; Liu, F. Y. Highly efficient electrocatalytic N2 reduction to ammonia over metallic 1T phase of MoS2 enabled by active sites separation mechanism. Adv. Sci. 2022, 9, 2103583.

    Article  CAS  Google Scholar 

  52. Wen, Y. K.; Zhu, H.; Hao, J. C.; Lu, S. L.; Zong, W.; Lai, F. L.; Ma, P. M.; Dong, W. F.; Liu, T. X.; Du, M. L. Metal-free boron and sulphur co-doped carbon nanofibers with optimized p-band centers for highly efficient nitrogen electroreduction to ammonia. Appl. Catal. B Environ. 2021, 292, 120144.

    Article  CAS  Google Scholar 

  53. Geng, Z. G.; Liu, Y.; Kong, X. D.; Li, P.; Li, K.; Liu, Z. Y.; Du, J. J.; Shu, M.; Si, R.; Zeng, J. Achieving a record-high yield rate of \(120.9\,{\rm{\mu }}{{\rm{g}}_{{\rm{N}}{{\rm{H}}_{\rm{3}}}}} \cdot {\rm{m}}{{\rm{g}}_{{\rm{cat}}{\rm{.}}}}^{ - 1} \cdot {{\rm{h}}^{ - 1}}\) for N2 electrochemical reduction over Ru single-atom catalysts. Adv. Mater. 2018, 30, 1803498.

    Article  Google Scholar 

  54. Wang, H. J.; Yu, H. J.; Wang, Z. Q.; Li, Y. H.; Xu, Y.; Li, X. N.; Xue, H. R.; Wang, L. Electrochemical fabrication of porous Au film on Ni foam for nitrogen reduction to ammonia. Small 2019, 15, 1804769.

    Article  Google Scholar 

  55. Zhang, J.; Ji, Y. J.; Wang, P. T.; Shao, Q.; Li, Y. Y.; Huang, X. Q. Adsorbing and activating N2 on heterogeneous Au−Fe3O4 nanoparticles for N2 fixation. Adv. Funct. Mater. 2020, 30, 1906579.

    Article  CAS  Google Scholar 

  56. Jin, M.; Zhang, X.; Han, M. M.; Wang, H. J.; Wang, G. Z.; Zhang, H. M. Efficient electrochemical N2 fixation by doped-oxygen-induced phosphorus vacancy defects on copper phosphide nanosheets. J. Mater. Chem. A 2020, 8, 5936–5942.

    Article  CAS  Google Scholar 

  57. Zhu, T. H.; Chen, Q. S.; Liao, P.; Duan, W. J.; Liang, S.; Yan, Z.; Feng, C. H. Single-atom Cu catalysts for enhanced electrocatalytic nitrate reduction with significant alleviation of nitrite production. Small 2020, 16, 2004526.

    Article  CAS  Google Scholar 

  58. Liu, H. Z.; Park, J.; Chen, Y. F.; Qiu, Y.; Cheng, Y.; Srivastava, K.; Gu, S.; Shanks, B. H.; Roling, L. T.; Li, W. Z. Electrocatalytic nitrate reduction on oxide-derived silver with tunable selectivity to nitrite and ammonia. ACS Catal. 2021, 11, 8431–8442.

    Article  CAS  Google Scholar 

  59. Chen, F. Y.; Wu, Z. Y.; Gupta, S.; Rivera, D. J.; Lambeets, S. V.; Pecaut, S.; Kim, J. Y. T.; Zhu, P.; Finfrock, Y. Z.; Meira, D. M. et al. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nat. Nanotechnol. 2022, 17, 759–767.

    Article  CAS  PubMed  Google Scholar 

  60. Fang, J. Y.; Zheng, Q. Z.; Lou, Y. Y.; Zhao, K. M.; Hu, S. N.; Li, G.; Akdim, O.; Huang, X. Y.; Sun, S. G. Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature. Nat. Commun. 2022, 13, 7899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang, Y. H.; Xu, A. N.; Wang, Z. Y.; Huang, L. S.; Li, J.; Li, F. W.; Wicks, J.; Luo, M. C.; Nam, D. H.; Tan, C. S. et al. Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption. J. Am. Chem. Soc. 2020, 142, 5702–5708.

    Article  CAS  PubMed  Google Scholar 

  62. Xiao, L.; Dai, W. D.; Mou, S. Y.; Wang, X. Y.; Cheng, Q.; Dong, F. Coupling electrocatalytic cathodic nitrate reduction with anodic formaldehyde oxidation at ultra-low potential over Cu2O. Energy Environ. Sci. 2023, 16, 2696–2704.

    Article  CAS  Google Scholar 

  63. Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730.

    Article  CAS  Google Scholar 

  64. Jia, R. R.; Wang, Y. T.; Wang, C. H.; Ling, Y. F.; Yu, Y. F.; Zhang, B. Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2. ACS Catal. 2020, 10, 3533–3540.

    Article  CAS  Google Scholar 

  65. Wang, Y. T.; Li, H. J.; Zhou, W.; Zhang, X.; Zhang, B.; Yu, Y. F. Structurally disordered RuO2 nanosheets with rich oxygen vacancies for enhanced nitrate electroreduction to ammonia. Angew. Chem., Int. Ed. 2022, 61, e202202604.

    Article  CAS  Google Scholar 

  66. Gao, J. N.; Jiang, B.; Ni, C. C.; Qi, Y. F.; Zhang, Y. Q.; Oturan, N.; Oturan, M. A. Non-precious Co3O4−TiO2/Ti cathode based electrocatalytic nitrate reduction: Preparation, performance and mechanism. Appl. Catal. B Environ. 2019, 254, 391–402.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Fundamental Research Funds for the Central Universities, China (No. 20720210010), the National Natural Science Foundation of China (Nos. 22001081 and 22075236), and the Science and Technology Projects of Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM, No. HRTP-[2022]-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanfeng Liang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Zhu, W., Ma, D. et al. Screening of transition metal oxides for electrocatalytic nitrate reduction to ammonia at large currents. Nano Res. 17, 3902–3910 (2024). https://doi.org/10.1007/s12274-023-6379-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6379-2

Keywords

Navigation