Skip to main content
Log in

Manipulating dielectric property of polymer coatings toward high-retention-rate lithium metal full batteries under harsh critical conditions

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lithium (Li) metal batteries (LMBs) can potentially deliver much higher energy density but remain plagued by uncontrollable Li plating with dendrite growth, unstable interfaces, and highly abundant excess Li (> 50 mAh·cm−2). Herein, different from the artificial layer or three-dimensional (3D) matrix host constructions, various dielectric polymers are initially well-comprehensively investigated from experimental characterizations to theoretical simulation to evaluate their functions in modulating Li ion distribution. As a proof of concept, a 3D interwoven high dielectric functional polymer (HDFP) nanofiber network with polar C–F dipole moments electrospun on copper (Cu) foil is designed, realizing uniform and controllable Li deposition capacity up to 5.0 mAh·cm−2, thereby enabling stable Li plating/stripping cycling over 1400 h at 1.0 mA·cm−2. More importantly, under the high-cathode loading (∼ 3.1 mAh·cm−2) and only 0.6 × excess Li (N/P ratio of 1.6), the full cells retain capacity retention of 97.4% after 200 cycles at 3.36 mA·cm−2 and achieve high energy density (297.7 Wh·kg−1 at cell-level) under lean electrolyte conditions (15 µL), much better than ever-reported literatures. Our work provides a new direction for designing high dielectric polymer coating toward high-retention-rate practical Li full batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, Y. J.; Tao, X. Y.; Wang, Y.; Jiang, C.; Ma, C.; Sheng, O. W.; Lu, G. X.; Lou, X. W. D. Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 2022, 375, 739–745.

    CAS  Google Scholar 

  2. Wang, J.; Li, L. G.; Hu, H. M.; Hu, H. F.; Guan, Q. H.; Huang, M.; Jia, L. J.; Adenusi, H.; Tian, K. V.; Zhang, J. et al. Toward dendrite-free metallic lithium anodes: From structural design to optimal electrochemical diffusion kinetics. ACS Nano, 2022, 16, 17729–17760.

    CAS  Google Scholar 

  3. Kang, Q.; Li, Y.; Zhuang, Z. C.; Wang, D. S.; Zhi, C. Y.; Jiang, P. K.; Huang, X. Y. Dielectric polymer based electrolytes for highperformance all-solid-state lithium metal batteries. J. Energy Chem. 2022, 69, 194–204.

    CAS  Google Scholar 

  4. Um, J. H.; Yu, S. H. Unraveling the mechanisms of lithium metal plating/stripping via in situ/operando analytical techniques. Adv. Energy Mater. 2021, 11, 2003004.

    CAS  Google Scholar 

  5. Zhang, W. D.; Zhang, S. Q.; Fan, L.; Gao, L. N.; Kong, X. Q.; Li, S. Y.; Li, J.; Hong, X.; Lu, Y. Y. Tuning the LUMO energy of an organic interphase to stabilize lithium metal batteries. ACS Energy Lett. 2019, 4, 644–650.

    CAS  Google Scholar 

  6. Wang, J.; Zhang, J.; Duan, S. R.; Jia, L. J.; Xiao, Q. B.; Liu, H. T.; Hu, H. M.; Cheng, S.; Zhang, Z. Y.; Li, L. G. et al. Lithium atom surface diffusion and delocalized deposition propelled by atomic metal catalyst toward ultrahigh-capacity dendrite-free lithium anode. Nano Lett. 2022, 22, 8008–8017.

    CAS  Google Scholar 

  7. Wang, J.; Zhang, J.; Cheng, S.; Yang, J.; Xi, Y. L.; Hou, X. G.; Xiao, Q. B.; Lin, H. Z. Long-life dendrite-free lithium metal electrode achieved by constructing a single metal atom anchored in a diffusion modulator layer. Nano Lett. 2021, 21, 3245–3253.

    CAS  Google Scholar 

  8. Wang, D.; Liu, Y. M.; Li, G. W.; Qin, C. C.; Huang, L.; Wu, Y. P. Liquid metal welding to suppress Li dendrite by equalized heat distribution. Adv. Funct. Mater. 2021, 31, 2106740.

    CAS  Google Scholar 

  9. Wang, S. Y.; Wang, Z. W.; Chen, F. Z.; Peng, B.; Xu, J.; Li, J. Z.; Lv, Y. H.; Kang, Q.; Xia, A. L.; Ma, L. B. Electrocatalysts in lithium-sulfur batteries. Nano Res., in press, https://doi.org/10.1007/s12274-022-5215-4.

  10. Hu, B.; Xu, J.; Fan, Z.; Xu, C.; Han, S.; Zhang, J.; Ma, L.; Ding, B.; Zhuang, Z.; Kang, Q. et al. Covalent organic framework-based lithium-sulfur batteries: Materials, interfaces, and solid-state electrolytes. Adv. Energy Mater., in press, https://doi.org/10.1002/aenm.202203540.

  11. Sun, H.; Zhu, G. Z.; Zhu, Y. M.; Lin, M. C.; Chen, H.; Li, Y. Y.; Hung, W. H.; Zhou, B.; Wang, X.; Bai, Y. X. et al. High-safety and high-energy-density lithium metal batteries in a novel ionic-liquid electrolyte. Adv. Mater. 2020, 32, 2001741.

    CAS  Google Scholar 

  12. Pei, F.; Fu, A.; Ye, W. B.; Peng, J.; Fang, X. L.; Wang, M. S.; Zheng, N. F. Robust lithium metal anodes realized by lithiophilic 3D porous current collectors for constructing high-energy lithium-sulfur batteries. ACS Nano 2019, 13, 8337–8346.

    CAS  Google Scholar 

  13. Yang, H. J.; Qiao, Y.; Chang, Z.; Deng, H.; He, P.; Zhou, H. S. A safe and sustainable lithium-ion-oxygen battery based on a low-cost dual-carbon electrodes architecture. Adv. Mater. 2021, 33, 2100827.

    CAS  Google Scholar 

  14. Shi, P.; Zhang, X. Q.; Shen, X.; Zhang, R.; Liu, H.; Zhang, Q. A review of composite lithium metal anode for practical applications. Adv. Mater. Technol. 2020, 5, 1900806.

    CAS  Google Scholar 

  15. Xu, S. M.; Duan, H.; Shi, J. L.; Zuo, T. T.; Hu, X. C.; Lang, S. Y.; Yan, M.; Liang, J. Y.; Yang, Y. G.; Kong, Q. H. et al. In situ fluorinated solid electrolyte interphase towards long-life lithium metal anodes. Nano Res. 2020, 13, 430–436.

    CAS  Google Scholar 

  16. Liu, S. F.; Ji, X.; Yue, J.; Hou, S.; Wang, P. F.; Cui, C. Y.; Chen, J.; Shao, B. W.; Li, J. R.; Han, F. D. et al. High interfacial-energy interphase promoting safe lithium metal batteries. J. Am. Chem. Soc. 2020, 142, 2438–2447.

    CAS  Google Scholar 

  17. Kim, M. S.; Ryu, J. H.; Deepika; Lim, Y. R.; Nah, I. W.; Lee, K. R.; Archer, L. A.; Il Cho, W. Langmuir—Blodgett artificial solid—electrolyte interphases for practical lithium metal batteries. Nat. Energy 2018, 3, 889–898.

    CAS  Google Scholar 

  18. Li, F.; He, J.; Liu, J. D.; Wu, M. G.; Hou, Y. Y.; Wang, H. P.; Qi, S. H.; Liu, Q. H.; Hu, J. W.; Ma, J. M. Gradient solid electrolyte interphase and lithium-ion solvation regulated by bisfluoroacetamide for stable lithium metal batteries. Angew. Chem., Int. Ed. 2021, 60, 6600–6608.

    CAS  Google Scholar 

  19. Wang, Y. Y.; Wang, Z. J.; Zhao, L.; Fan, Q. N.; Zeng, X. H.; Liu, S. L.; Pang, W. K.; He, Y. B.; Guo, Z. P. Lithium metal electrode with increased air stability and robust solid electrolyte interphase realized by silane coupling agent modification. Adv. Mater. 2021, 33, 2008133.

    CAS  Google Scholar 

  20. Liu, F. F.; Wang, L. F.; Zhang, Z. W.; Shi, P. C.; Feng, Y. Z.; Yao, Y.; Ye, S. F.; Wang, H. Y.; Wu, X. J.; Yu, Y. A mixed lithium-ion conductive Li2S/Li2Se protection layer for stable lithium metal anode. Adv. Funct. Mater. 2020, 30, 2001607.

    CAS  Google Scholar 

  21. Xu, R.; Cheng, X. B.; Yan, C.; Zhang, X. Q.; Xiao, Y.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. Artificial interphases for highly stable lithium metal anode. Matter 2019, 1, 317–344.

    Google Scholar 

  22. Piao, N.; Liu, S. F.; Zhang, B.; Ji, X.; Fan, X. L.; Wang, L.; Wang, P. F.; Jin, T.; Liou, S. C.; Yang, H. C. et al. Lithium metal batteries enabled by synergetic additives in commercial carbonate electrolytes. ACS Energy Lett. 2021, 6, 1839–1848.

    CAS  Google Scholar 

  23. Fu, J. L.; Ji, X.; Chen, J.; Chen, L.; Fan, X. L.; Mu, D. B.; Wang, C. S. Lithium nitrate regulated sulfone electrolytes for lithium metal batteries. Angew. Chem., Int. Ed. 2020, 59, 22194–22201.

    CAS  Google Scholar 

  24. Li, J.; Zou, P. C.; Chiang, S. W.; Yao, W. T.; Wang, Y.; Liu, P.; Liang, C. W.; Kang, F. Y.; Yang, C. A conductive-dielectric gradient framework for stable lithium metal anode. Energy Storage Mater. 2020, 24, 700–706.

    Google Scholar 

  25. Chen, C.; Guan, J.; Li, N. W.; Lu, Y.; Luan, D. Y.; Zhang, C. H.; Cheng, G.; Yu, L.; Lou, X. W. Lotus-root-like carbon fibers embedded with Ni-Co nanoparticles for dendrite-free lithium metal anodes. Adv. Mater. 2021, 33, 2100608.

    CAS  Google Scholar 

  26. Zhang, K.; Liu, W.; Gao, Y. L.; Wang, X. W.; Chen, Z. X.; Ning, R. Q.; Yu, W.; Li, R. L.; Li, L.; Li, X. et al. A high-performance lithium metal battery with ion-selective nanofluidic transport in a conjugated microporous polymer protective layer. Adv. Mater. 2021, 33, 2006323.

    CAS  Google Scholar 

  27. Chen, H.; Yang, Y. F.; Boyle, D. T.; Jeong, Y. K.; Xu, R.; de Vasconcelos, L. S.; Huang, Z. J.; Wang, H. S.; Wang, H. X.; Huang, W. X. et al. Free-standing ultrathin lithium metal-graphene oxide host foils with controllable thickness for lithium batteries. Nat. Energy 2021, 6, 790–798.

    CAS  Google Scholar 

  28. Qian, J.; Wang, S.; Li, Y.; Zhang, M. L.; Wang, F. J.; Zhao, Y. Y.; Sun, Q.; Li, L.; Wu, F.; Chen, R. J. Lithium induced nano-sized copper with exposed lithiophilic surfaces to achieve dense lithium deposition for lithium metal anode. Adv. Funct. Mater. 2021, 31, 2006950.

    CAS  Google Scholar 

  29. Sun, C. Z.; Li, Y. P.; Jin, J.; Yang, J. H.; Wen, Z. Y. ZnO nanoarray-modified nickel foam as a lithiophilic skeleton to regulate lithium deposition for lithium-metal batteries. J. Mater. Chem. A 2019, 7, 7752–7759.

    CAS  Google Scholar 

  30. Yue, X. Y.; Li, X. L.; Wang, W. W.; Chen, D.; Qiu, Q. Q.; Wang, Q. C.; Wu, X. J.; Fu, Z. W.; Shadike, Z.; Yang, X. Q. et al. Wettable carbon felt framework for high loading Li-metal composite anode. Nano Energy 2019, 60, 257–266.

    CAS  Google Scholar 

  31. Cheng, Q.; Li, A. J.; Li, N.; Li, S.; Zangiabadi, A.; Li, T. D.; Huang, W. L.; Li, A. C.; Jin, T. W.; Song, Q. Q. et al. Stabilizing solid electrolyte-anode interface in Li-metal batteries by boron nitride-based nanocomposite coating. Joule 2019, 3, 1510–1522.

    CAS  Google Scholar 

  32. Yan, K.; Lu, Z. D.; Lee, H. W.; Xiong, F.; Hsu, P. C.; Li, Y. Z.; Zhao, J.; Chu, S.; Cui, Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 2016, 1, 16010.

    CAS  Google Scholar 

  33. Cui, Y. L.; Liu, S. F.; Wang, D. H.; Wang, X. L.; Xia, X. H.; Gu, C. D.; Tu, J. P. A facile way to construct stable and ionic conductive lithium sulfide nanoparticles composed solid electrolyte interphase on Li metal anode. Adv. Funct. Mater. 2021, 31, 2006380.

    CAS  Google Scholar 

  34. Huang, Z. J.; Zhang, C.; Lv, W.; Zhou, G. M.; Zhang, Y. B.; Deng, Y. Q.; Wu, H. L.; Kang, F. Y.; Yang, Q. H. Realizing stable lithium deposition by in situ grown Cu2S nanowires inside commercial Cu foam for lithium metal anodes. J. Mater. Chem. A 2019, 7, 727–732.

    CAS  Google Scholar 

  35. Lu, Y. Z.; Wang, J. S.; Chen, Y.; Zheng, X. Y.; Yao, H. R.; Mathur, S.; Hong, Z. S. Spatially controlled lithium deposition on silver-nanocrystals-decorated TiO2 nanotube arrays enabling ultrastable lithium metal anode. Adv. Funct. Mater. 2021, 31, 2009605.

    CAS  Google Scholar 

  36. Liu, W.; Lin, D. C.; Pei, A.; Cui, Y. Stabilizing lithium metal anodes by uniform Li-ion flux distribution in nanochannel confinement. J. Am. Chem. Soc. 2016, 138, 15443–15450.

    CAS  Google Scholar 

  37. Zhu, B.; Jin, Y.; Hu, X. Z.; Zheng, Q. H.; Zhang, S.; Wang, Q. J.; Zhu, J. Poly(dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes. Adv. Mater. 2017, 29, 1603755.

    Google Scholar 

  38. Luo, J.; Fang, C. C.; Wu, N. L. High polarity poly(vinylidene difluoride) thin coating for dendrite-free and high-performance lithium metal anodes. Adv. Energy Mater. 2018, 8, 1701482.

    Google Scholar 

  39. Tamwattana, O.; Park, H.; Kim, J.; Hwang, I.; Yoon, G.; Hwang, T. H.; Kang, Y. S.; Park, J.; Meethong, N.; Kang, K. High-dielectric polymer coating for uniform lithium deposition in anode-free lithium batteries. ACS Energy Lett. 2021, 6, 4416–4425.

    CAS  Google Scholar 

  40. Lopez, J.; Pei, A.; Oh, J. Y.; Wang, G. J. N.; Cui, Y.; Bao, Z. N. Effects of polymer coatings on electrodeposited lithium metal. J. Am. Chem. Soc. 2018, 140, 11735–11744.

    CAS  Google Scholar 

  41. He, Y. T.; Zhang, Y. H.; Sari, H. M. K.; Wang, Z. H.; Lü, Z.; Huang, X. Q.; Liu, Z. G.; Zhang, J. J.; Li, X. F. New insight into Li metal protection: Regulating the Li-ion flux via dielectric polarization. Nano Energy 2021, 89, 106334.

    CAS  Google Scholar 

  42. Meyerson, M. L.; Papa, P. E.; Heller, A.; Mullins, C. B. Recent developments in dendrite-free lithium-metal deposition through tailoring of micro- and nanoscale artificial coatings. ACS Nano 2021, 15, 29–46.

    CAS  Google Scholar 

  43. Wei, J. J.; Zhu, L. Intrinsic polymer dielectrics for high energy density and low loss electric energy storage. Prog. Polym. Sci. 2020, 106, 101254.

    CAS  Google Scholar 

  44. Ayala, J.; Ramirez, D.; Myers, J. C.; Lodge, T. P.; Parsons, J.; Alcoutlabi, M. Performance and morphology of centrifugally spun Co3O4/C composite fibers for anode materials in lithium-ion batteries. J. Mater. Sci. 2021, 56, 16010–16027.

    CAS  Google Scholar 

  45. Li, J. H.; Shao, X. S.; Zhou, Q.; Li, M. Z.; Zhang, Q. Q. The double effects of silver nanoparticles on the PVDF membrane: Surface hydrophilicity and antifouling performance. Appl. Surf. Sci. 2013, 265, 663–670.

    CAS  Google Scholar 

  46. Awan, S. U.; Hasanain, S. K.; Bertino, M. F.; Jaffari, G. H. Effects of substitutional Li on the ferromagnetic response of Li co-doped ZnO: Co nanoparticles. J. Phys.: Condens. Matter 2013, 25, 156005.

    Google Scholar 

  47. Su, D. W.; Cortie, M.; Wang, G. X. Fabrication of N-doped graphene-carbon nanotube hybrids from prussian blue for lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1602014.

    Google Scholar 

  48. Zhang, L. H.; Yin, X. G.; Shen, S. B.; Liu, Y.; Li, T.; Wang, H.; Lv, X. H.; Qin, X. Y.; Chiang, S. W.; Fu, Y. Z. et al. Simultaneously homogenized electric field and ionic flux for reversible ultrahigh-areal-capacity Li deposition. Nano Lett. 2020, 20, 5662–5669.

    CAS  Google Scholar 

  49. Wang, G.; Chen, C.; Chen, Y. H.; Kang, X. W.; Yang, C. H.; Wang, F.; Liu, Y.; Xiong, X. H. Self-stabilized and strongly adhesive supramolecular polymer protective layer enables ultrahigh-rate and large-capacity lithium-metal anode. Angew. Chem., Int. Ed. 2020, 59, 2055–2060.

    CAS  Google Scholar 

  50. Zhang, W. D.; Wu, Q.; Huang, J. X.; Fan, L.; Shen, Z. Y.; He, Y.; Feng, Q.; Zhu, G. N.; Lu, Y. Y. Colossal granular lithium deposits enabled by the grain-coarsening effect for high-efficiency lithium metal full batteries. Adv. Mater. 2020, 32, 2001740.

    CAS  Google Scholar 

  51. Fu, C. Y.; Venturi, V.; Kim, J.; Ahmad, Z.; Ells, A. W.; Viswanathan, V.; Helms, B. A. Universal chemomechanical design rules for solid-ion conductors to prevent dendrite formation in lithium metal batteries. Nat. Mater. 2020, 19, 758–766.

    CAS  Google Scholar 

  52. Yu, Z. A.; Wang, H. S.; Kong, X.; Huang, W.; Tsao, Y.; Mackanic, D. G.; Wang, K. C.; Wang, X. C.; Huang, W. X.; Choudhury, S. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 2020, 5, 526–533.

    CAS  Google Scholar 

  53. Zhan, Y. X.; Shi, P.; Ma, X. X.; Jin, C. B.; Zhang, Q. K.; Yang, S. J.; Li, B. Q.; Zhang, X. Q.; Huang, J. Q. Failure mechanism of lithiophilic sites in composite lithium metal anode under practical conditions. Adv. Energy Mater. 2022, 12, 2103291.

    CAS  Google Scholar 

  54. Di, J.; Yang, J. L.; Tian, H.; Ren, P. F.; Deng, Y. R.; Tang, W. H.; Yan, W. Q.; Liu, R. P.; Ma, J. M. Dendrites-free lithium metal anode enabled by synergistic surface structural engineering. Adv. Funct. Mater. 2022, 32, 2200474.

    CAS  Google Scholar 

  55. Zhu, J. Q.; Cui, Z.; He, S. A.; Wang, H.; Gao, M. L.; Wang, W. Q.; Yang, J. M.; Xu, X. T.; Hu, J. Q.; Lu, A. J. et al. Inorganic-rich and flexible solid—electrolyte interphase formed over dipole—dipole interaction for highly stable lithium-metal anodes. Adv. Funct. Mater. 2022, 32, 2205304.

    CAS  Google Scholar 

  56. Zhang, S. J.; You, J. H.; He, Z. W.; Zhong, J. J.; Zhang, P. F.; Yin, Z. W.; Pan, F.; Ling, M.; Zhang, B. K.; Lin, Z. Scalable lithiophilic/sodiophilic porous buffer layer fabrication enables uniform nucleation and growth for lithium/sodium metal batteries. Adv. Funct. Mater. 2022, 32, 2200967.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financial supported by the National Natural Science Foundation of China (Nos. 51877132, 52003153, and 22005186) and the Program of Shanghai Academic Research Leader (No. 21XD1401600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingyi Huang.

Electronic Supplementary Material

12274_2023_5478_MOESM1_ESM.pdf

Manipulating dielectric property of polymer coatings toward high-retention-rate lithium metal full batteries under harsh critical conditions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Q., Zhuang, Z., Li, Y. et al. Manipulating dielectric property of polymer coatings toward high-retention-rate lithium metal full batteries under harsh critical conditions. Nano Res. 16, 9240–9249 (2023). https://doi.org/10.1007/s12274-023-5478-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5478-4

Keywords

Navigation