Skip to main content
Log in

Interface engineering of Zn meal anodes using electrochemically inert Al2O3 protective nanocoatings

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Aqueous rechargeable Zn-ion batteries are regarded as a promising alternative to lithium-ion batteries owing to their high energy density, low cost, and high safety. However, their commercialization is severely restricted by the Zn dendrite formation and side reactions. Herein, we propose that these issues can be minimized by modifying the interfacial properties through introducing electrochemically inert Al2O3 nanocoatings on Zn meal anodes (Al2O3@Zn). The Al2O3 nanocoatings can effectively suppress both the dendrite growth and side reactions. As a result, the Al2O3@Zn symmetric cells show excellent electrochemical performance with a long lifespan of more than 4,000 h at 1 mA·cm−2 and 1 mAh·cm−2. Meanwhile, the assembled Al2O3@Zn//V2O5 full cells can deliver a high capacity (236.2 mAh·g−1) and long lifespan with a capacity retention of 76.11% after 1,000 cycles at 4 A·g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, S. L.; Ao, X.; Huang, J.; Wei, B.; Zhai, Y. L.; Zhai, D.; Deng, W. Q.; Su, C. L.; Wang, D. S.; Li, Y. D. Isolated single-atom Ni−N5 catalytic site in hollow porous carbon capsules for efficient lithium-sulfur batteries. Nano Lett. 2021, 21, 9691–9698.

    Article  CAS  Google Scholar 

  2. Zhuang, Z. C.; Huang, J. Z.; Li, Y.; Zhou, L.; Mai, L. Q. The holy grail in platinum-free electrocatalytic hydrogen evolution: Molybdenum-based catalysts and recent advances. ChemElectroChem 2019, 6, 3570–3589.

    Article  CAS  Google Scholar 

  3. Zhuang, Z. H.; Li, Y.; Huang, J. Z.; Li, Z. L.; Zhao, K. N.; Zhao, Y. L.; Xu, L.; Zhou, L.; Moskaleva, L. V.; Mai, L. Q. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617–624.

    Article  CAS  Google Scholar 

  4. Liang, J.; Zhu, G. Y.; Zhang, Y. Z.; Liang, H. F.; Huang, W. Conversion of hydroxide into carbon-coated phosphide using plasma for sodium ion batteries. Nano Res. 2022, 15, 2023–2029.

    Article  CAS  Google Scholar 

  5. Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

    Article  CAS  Google Scholar 

  6. Ma, L. B.; Lv, Y. H.; Wu, J. X.; Xia, C.; Kang, Q.; Zhang, Y. Z.; Liang, H. F.; Jin, Z. Recent advances in anode materials for potassium-ion batteries: A review. Nano Res. 2021, 14, 4442–4470.

    Article  CAS  Google Scholar 

  7. Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

    Article  CAS  Google Scholar 

  8. Zhang, J. Y.; Xia, C.; Wang, H. F.; Tang, C. Recent advances in electrocatalytic oxygen reduction for on-site hydrogen peroxide synthesis in acidic media. J. Energy Chem. 2022, 67, 432–450.

    Article  CAS  Google Scholar 

  9. Liu, C. X.; Zhang, M. L.; Li, J. W.; Xue, W. Q.; Zheng, T. T.; Xia, C.; Zeng, J. Nanoconfinement engineering over hollow multi-shell structured copper towards efficient electrocatalytical C−C coupling. Angew. Chem., Int. Ed. 2022, 61, e202113498.

    CAS  Google Scholar 

  10. Zheng, T. T.; Liu, C. X.; Guo, C. X.; Zhang, M. L.; Li, X.; Jiang, Q.; Xue, W. Q.; Li, H. L.; Li, A. W.; Pao, C. W. et al. Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying. Nat. Nanotechnol. 2021, 16, 1386–1393.

    Article  CAS  Google Scholar 

  11. Wang, L. G.; Liu, T. F.; Wu, T. P.; Lu, J. Exploring new battery knowledge by advanced characterizing technologies. Exploration 2021, 1, 20210130.

    Article  Google Scholar 

  12. Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater 2018, 30, 1800561.

    Article  Google Scholar 

  13. Cheng, Y.; Sun, Y.; Chu, C. T.; Chang, L. M.; Wang, Z. M.; Zhang, D. Y.; Liu, W. Q.; Zhuang, Z. C.; Wang, L. M. Stabilizing effects of atomic Ti doping on high-voltage high-nickel layered oxide cathode for lithium-ion rechargeable batteries. Nano Res. 2022, 15, 4091–4099.

    Article  CAS  Google Scholar 

  14. Zhang, Y. Z.; Liang, J.; Huang, Z. H.; Wang, Q.; Zhu, G. Y.; Dong, S. Y.; Liang, H. F.; Dong, X. C. Ionically conductive tunnels in h-WO3 enable high-rate NH4+ storage. Adv. Sci. 2022, 9, 2105158.

    Article  CAS  Google Scholar 

  15. Shin, J.; Choi, J. W. Opportunities and reality of aqueous rechargeable batteries. Adv. Energy Mater. 2020, 10, 2001386.

    Article  CAS  Google Scholar 

  16. Liu, J. L.; Xu, C. H.; Chen, Z.; Ni, S. B.; Shen, Z. X. Progress in aqueous rechargeable batteries. Green Energy Environ. 2018, 3, 20–41.

    Article  Google Scholar 

  17. Liang, H. F.; Cao, Z.; Ming, F. W.; Zhang, W. L.; Anjum, D. H.; Cui, Y.; Cavallo, L.; Alshareef, H. N. Aqueous zinc-ion storage in MoS2 by tuning the intercalation energy. Nano Lett. 2019, 19, 3199–3206.

    Article  CAS  Google Scholar 

  18. Ming, J.; Guo, J.; Xia, C.; Wang, W. X.; Alshareef, H. N. Zinc-ion batteries: Materials, mechanisms, and applications. Mater. Sci. Eng. R Rep. 2019, 135, 58–84.

    Article  Google Scholar 

  19. Xia, C.; Guo, J.; Lei, Y. J.; Liang, H. F.; Zhao, C.; Alshareef, H. N. Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode. Adv. Mater. 2018, 30, 1705580.

    Article  Google Scholar 

  20. Du, Y. H.; Wang, X. Y.; Sun, J. C. Tunable oxygen vacancy concentration in vanadium oxide as mass-produced cathode for aqueous zinc-ion batteries. Nano Res. 2021, 14, 754–761.

    Article  CAS  Google Scholar 

  21. Ren, H.; Zhao, J.; Yang, L.; Liang, Q. H.; Madhavi, S.; Yan, Q. Y. Inverse opal manganese dioxide constructed by few-layered ultrathin nanosheets as high-performance cathodes for aqueous zinc-ion batteries. Nano Res. 2019, 12, 1347–1353.

    Article  CAS  Google Scholar 

  22. Li, Q.; Zhao, Y. W.; Mo, F. N.; Wang, D. H.; Yang, Q.; Huang, Z. D.; Liang, G. J.; Chen, A.; Zhi, C. Y. Dendrites issues and advances in Zn anode for aqueous rechargeable Zn-based batteries. EcoMat 2020, 2, e12035.

    Article  CAS  Google Scholar 

  23. Xie, C. L.; Li, Y. H.; Wang, Q.; Sun, D.; Tang, Y. G.; Wang, H. Y. Issues and solutions toward zinc anode in aqueous zinc-ion batteries: A mini review. Carbon Energy 2020, 2, 540–560.

    Article  CAS  Google Scholar 

  24. Zheng, J. X.; Huang, Z. H.; Ming, F. W.; Zeng, Y.; Wei, B. B.; Jiang, Q.; Qi, Z. B.; Wang, Z. C.; Liang, H. F. Surface and interface engineering of Zn anodes in aqueous rechargeable Zn-ion batteries. Small, in press, https://doi.org/10.1002/smll.202200006.

  25. Zhang, T. S.; Tang, Y.; Guo, S.; Cao, X. X.; Pan, A. Q.; Fang, G. Z.; Zhou, J.; Liang, S. Q. Fundamentals and perspectives in developing zinc-ion battery electrolytes: A comprehensive review. Energy Environ. Sci. 2020, 13, 4625–4665.

    Article  CAS  Google Scholar 

  26. Wu, B. K.; Luo, W.; Li, M.; Zeng, L.; Mai, L. Q. Achieving better aqueous rechargeable zinc ion batteries with heterostructure electrodes. Nano Res. 2021, 14, 3174–3187.

    Article  CAS  Google Scholar 

  27. Wang, Y. Z.; Guo, T. C.; Yin, J.; Tian, Z. N.; Ma, Y. C.; Liu, Z. X.; Zhu, Y. P.; Alshareef, H. N. Controlled deposition of zinc-metal anodes via selectively polarized ferroelectric polymers. Adv. Mater. 2022, 34, 2106937.

    Article  CAS  Google Scholar 

  28. Zhu, M. S.; Hu, J. P.; Lu, Q. Q.; Dong, H. Y.; Karnaushenko, D. D.; Becker, C.; Karnaushenko, D.; Li, Y.; Tang, H. M.; Qu, Z.; et al. A patternable and in situ formed polymeric zinc blanket for a reversible zinc anode in a skin-mountable microbattery. Adv. Mater. 2021, 33, 2007497.

    Article  CAS  Google Scholar 

  29. Zheng, J. X.; Huang, Z. H.; Zeng, Y.; Liu, W. Q.; Wei, B. B.; Qi, Z. B.; Wang, Z. C.; Xia, C.; Liang, H. F. Electrostatic shielding regulation of magnetron sputtered Al-based alloy protective coatings enables highly reversible zinc anodes. Nano Lett. 2022, 22, 1017–1023.

    Article  CAS  Google Scholar 

  30. Zheng, J. X.; Cao, Z.; Ming, F. W.; Liang, H. F.; Qi, Z. B.; Liu, W. Q.; Xia, C.; Chen, C. X.; Cavallo, L.; Wang, Z. C.; et al. Preferred orientation of TiN coatings enables stable zinc anodes. ACS Energy Lett. 2022, 7, 197–203.

    Article  CAS  Google Scholar 

  31. Li, B.; Xue, J.; Han, C.; Liu, N.; Ma, K.; Zhang, R.; Wu, X.; Dai, L.; Wang, L.; He, Z. A hafnium oxide-coated dendrite-free zinc anode for rechargeable aqueous zinc-ion batteries. J. Colloid Interface Sci. 2021, 599, 467–475.

    Article  CAS  Google Scholar 

  32. Negi, R. S.; Celik, E.; Pan, R. J.; Stäglich, R.; Senker, J. R.; Elm, M. T. Insights into the positive effect of post-annealing on the electrochemical performance of Al2O3-coated Ni-rich NCM cathodes for lithium-ion batteries. ACS Appl. Energy Mater. 2021, 4, 3369–3380.

    Article  CAS  Google Scholar 

  33. Kim, D. S.; Kim, Y. E.; Kim, H. Improved fast charging capability of graphite anodes via amorphous Al2O3 coating for high power lithium ion batteries. J. Power Sources 2019, 422, 18–24.

    Article  CAS  Google Scholar 

  34. Lu, H. Y.; Chen, X. Y.; Jia, Y. L.; Chen, H.; Wang, Y. X.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Engineering Al2O3 atomic layer deposition: Enhanced hard carbon-electrolyte interface towards practical sodium ion batteries. Nano Energy 2019, 64, 103903.

    Article  CAS  Google Scholar 

  35. Wu, Z. H.; Zhang, X. D.; Deng, L. J.; Zhang, Y. S.; Wang, Z.; Shen, Y. L.; Shao, G. S. Atomic layer coated Al2O3 on nitrogen doped vertical graphene nanosheets for high performance sodium ion batteries. Energy Environ. Mater. 2022, 5, 285–294.

    Article  CAS  Google Scholar 

  36. He, H. B.; Tong, H.; Song, X. Y.; Song, X. P.; Liu, J. Highly stable Zn metal anodes enabled by atomic layer deposited Al2O3 coating for aqueous zinc-ion batteries. J. Mater. Chem. A 2020, 8, 7836–7846.

    Article  CAS  Google Scholar 

  37. Dong, S. D.; Zhou, Y.; Hai, C. X.; Zeng, J. B.; Sun, Y. X.; Ma, Y. F.; Shen, Y.; Li, X.; Ren, X. F.; Sun, C. et al. Enhanced cathode performance: Mixed Al2O3 and LiAlO2 coating of Li12Ni0.13Co0.13Mn0.54O2. ACS Appl. Mater. Interfaces 2020, 12, 38153–38162.

    Article  CAS  Google Scholar 

  38. Ma, L. T.; Chen, S. M.; Li, H. F.; Ruan, Z. H.; Tang, Z. J.; Liu, Z. X.; Wang, Z. F.; Huang, Y.; Pei, Z. X.; Zapien, J. A. et al. Initiating a mild aqueous electrolyte Co3O4/Zn battery with 2.2 V-high voltage and 5000-cycle lifespan by a Co(III) rich-electrode. Energy Environ. Sci. 2018, 11, 2521–2530.

    Article  CAS  Google Scholar 

  39. Jung, S. C.; Kim, H. J.; Choi, J. W.; Han, Y. K. Sodium ion diffusion in Al2O3: A distinct perspective compared with lithium ion diffusion. Nano Lett. 2014, 14, 6559–6563.

    Article  CAS  Google Scholar 

  40. Zeng, Z. S.; Zeng, Y. H.; Sun, L. N.; Mi, H. W.; Deng, L. B.; Zhang, P. X.; Ren, X. Z.; Li, Y. L. Long cyclic stability of acidic aqueous zinc-ion batteries achieved by atomic layer deposition: The effect of the induced orientation growth of the Zn anode. Nanoscale 2021, 13, 12223–12232.

    Article  CAS  Google Scholar 

  41. Zhang, Q.; Luan, J. Y.; Huang, X. B.; Wang, Q.; Sun, D.; Tang, Y. G.; Ji, X. B.; Wang, H. Y. Revealing the role of crystal orientation of protective layers for stable zinc anode. Nat. Commun. 2020, 11, 3961.

    Article  CAS  Google Scholar 

  42. Liang, P. C.; Yi, J.; Liu, X. Y.; Wu, K.; Wang, Z.; Cui, J.; Liu, Y. Y.; Wang, Y. G.; Xia, Y. Y.; Zhang, J. J. Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries. Adv. Funct. Mater. 2020, 30, 1908528.

    Article  CAS  Google Scholar 

  43. Liu, H. Y.; Wang, J. G.; Hua, W.; Sun, H. H.; Huyan, Y.; Tian, S.; Hou, Z. D.; Yang, J. C.; Wei, C. G.; Kang, F. Y. Building ohmic contact interfaces toward ultrastable Zn metal anodes. Adv. Sci. 2021, 8, 2102612.

    Article  CAS  Google Scholar 

  44. Bin, D.; Huo, W. C.; Yuan, Y. B.; Huang, J. H.; Liu, Y.; Zhang, Y. X.; Dong, F.; Wang, Y. G.; Xia, Y. Y. Organic-inorganic-induced polymer intercalation into layered composites for aqueous zinc-ion battery. Chem 2020, 6, 968–984.

    Article  CAS  Google Scholar 

  45. Hu, P.; Zhu, T.; Ma, J. X.; Cai, C. C.; Hu, G. W.; Wang, X. P.; Liu, Z. A.; Zhou, L.; Mai, L. Q. Porous V2O5 microspheres: A high-capacity cathode material for aqueous zinc-ion batteries. Chem. Commun. 2019, 55, 8486–8489.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51601163, 22001081, and 22075236), the National Key Research and Development Program of China (No. 2017YFE0198100), the Natural Science Foundation of Fujian Province (No. 2021J011211), Xiamen Municipal Bureau of Science and Technology (No. 3502Z20206070), and Xiamen University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Kang, Zhengbing Qi or Hanfeng Liang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Wu, Q., Wu, M. et al. Interface engineering of Zn meal anodes using electrochemically inert Al2O3 protective nanocoatings. Nano Res. 15, 7227–7233 (2022). https://doi.org/10.1007/s12274-022-4477-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4477-1

Keywords

Navigation